{"title":"在尖顶的3-歧管上阻碍阿诺索夫流","authors":"Misha Schmalian","doi":"10.1112/blms.70049","DOIUrl":null,"url":null,"abstract":"<p>Using results relating taut foliations, Heegaard–Floer homology and pseudo-Anosov flows, we find cusped hyperbolic 3-manifolds which are not the non-singular part of a pseudo-Anosov flow. In particular, we find the first examples of cusped hyperbolic 3-manifolds not admitting veering triangulations, confirming a conjecture of S. Schleimer.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 5","pages":"1584-1592"},"PeriodicalIF":0.8000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70049","citationCount":"0","resultStr":"{\"title\":\"Obstructing Anosov flows on cusped 3-manifolds\",\"authors\":\"Misha Schmalian\",\"doi\":\"10.1112/blms.70049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Using results relating taut foliations, Heegaard–Floer homology and pseudo-Anosov flows, we find cusped hyperbolic 3-manifolds which are not the non-singular part of a pseudo-Anosov flow. In particular, we find the first examples of cusped hyperbolic 3-manifolds not admitting veering triangulations, confirming a conjecture of S. Schleimer.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 5\",\"pages\":\"1584-1592\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70049\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.70049\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.70049","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Using results relating taut foliations, Heegaard–Floer homology and pseudo-Anosov flows, we find cusped hyperbolic 3-manifolds which are not the non-singular part of a pseudo-Anosov flow. In particular, we find the first examples of cusped hyperbolic 3-manifolds not admitting veering triangulations, confirming a conjecture of S. Schleimer.