{"title":"用于研究卡波西肉瘤相关疱疹病毒裂解复制和发病机制的可诱导细菌人工染色体系统的建立和表征","authors":"Xue Xu, Peixian Dong, Wenwei Li, Xiaoqian Wang, Zizhen Ming, Zhenshan Liu, Fanxiu Zhu, Qiming Liang","doi":"10.1002/jmv.70392","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Bacterial artificial chromosome (BAC) is widely used to manipulate herpesvirus genome and generate recombinant virus. Here, we developed a new KSHV BACmid, namely as iBAC, by replacing the EGFP with TET3G transactivator under EF1α promoter and inserted Tet response elements in the promoter of RTA in the original KSHV BAC16 clone and characterized KSHV lytic replication in SLK-iBAC cells. SLK-iBAC cells developed more efficient lytic replication and generated more progeny virus than iSLK-BAC16 cells upon the same conditions of doxycycline treatment. Since SLK-iBAC cells only occupied hygromycin selection marker, it is convenient to generate cellular gene knockout via lentivirus-mediated CRISPR-Cas9 or stably express viral or cellular gene via lentivirus followed by antibiotic selection, making iBAC system a better tool to identify cellular targets of viral proteins in the context of virus infection or study the role of viral or cellular genes for KSHV lytic replication and pathogenesis. In addition, iBAC is color-free and can be utilized to track subcellular localization of viral proteins or colocalization between different viral proteins by introducing fusing fluorescent proteins into the BAC backbone. Therefore, the new KSHV iBAC is a powerful inducible tool to study KSHV lytic replication and pathogenesis in cell model.</p></div>","PeriodicalId":16354,"journal":{"name":"Journal of Medical Virology","volume":"97 5","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and Characterization of an Inducible Bacterial Artificial Chromosome System for Studying Lytic Replication and Pathogenesis of Kaposi's Sarcoma-Associated Herpesvirus\",\"authors\":\"Xue Xu, Peixian Dong, Wenwei Li, Xiaoqian Wang, Zizhen Ming, Zhenshan Liu, Fanxiu Zhu, Qiming Liang\",\"doi\":\"10.1002/jmv.70392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Bacterial artificial chromosome (BAC) is widely used to manipulate herpesvirus genome and generate recombinant virus. Here, we developed a new KSHV BACmid, namely as iBAC, by replacing the EGFP with TET3G transactivator under EF1α promoter and inserted Tet response elements in the promoter of RTA in the original KSHV BAC16 clone and characterized KSHV lytic replication in SLK-iBAC cells. SLK-iBAC cells developed more efficient lytic replication and generated more progeny virus than iSLK-BAC16 cells upon the same conditions of doxycycline treatment. Since SLK-iBAC cells only occupied hygromycin selection marker, it is convenient to generate cellular gene knockout via lentivirus-mediated CRISPR-Cas9 or stably express viral or cellular gene via lentivirus followed by antibiotic selection, making iBAC system a better tool to identify cellular targets of viral proteins in the context of virus infection or study the role of viral or cellular genes for KSHV lytic replication and pathogenesis. In addition, iBAC is color-free and can be utilized to track subcellular localization of viral proteins or colocalization between different viral proteins by introducing fusing fluorescent proteins into the BAC backbone. Therefore, the new KSHV iBAC is a powerful inducible tool to study KSHV lytic replication and pathogenesis in cell model.</p></div>\",\"PeriodicalId\":16354,\"journal\":{\"name\":\"Journal of Medical Virology\",\"volume\":\"97 5\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Virology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jmv.70392\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"VIROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Virology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jmv.70392","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VIROLOGY","Score":null,"Total":0}
Development and Characterization of an Inducible Bacterial Artificial Chromosome System for Studying Lytic Replication and Pathogenesis of Kaposi's Sarcoma-Associated Herpesvirus
Bacterial artificial chromosome (BAC) is widely used to manipulate herpesvirus genome and generate recombinant virus. Here, we developed a new KSHV BACmid, namely as iBAC, by replacing the EGFP with TET3G transactivator under EF1α promoter and inserted Tet response elements in the promoter of RTA in the original KSHV BAC16 clone and characterized KSHV lytic replication in SLK-iBAC cells. SLK-iBAC cells developed more efficient lytic replication and generated more progeny virus than iSLK-BAC16 cells upon the same conditions of doxycycline treatment. Since SLK-iBAC cells only occupied hygromycin selection marker, it is convenient to generate cellular gene knockout via lentivirus-mediated CRISPR-Cas9 or stably express viral or cellular gene via lentivirus followed by antibiotic selection, making iBAC system a better tool to identify cellular targets of viral proteins in the context of virus infection or study the role of viral or cellular genes for KSHV lytic replication and pathogenesis. In addition, iBAC is color-free and can be utilized to track subcellular localization of viral proteins or colocalization between different viral proteins by introducing fusing fluorescent proteins into the BAC backbone. Therefore, the new KSHV iBAC is a powerful inducible tool to study KSHV lytic replication and pathogenesis in cell model.
期刊介绍:
The Journal of Medical Virology focuses on publishing original scientific papers on both basic and applied research related to viruses that affect humans. The journal publishes reports covering a wide range of topics, including the characterization, diagnosis, epidemiology, immunology, and pathogenesis of human virus infections. It also includes studies on virus morphology, genetics, replication, and interactions with host cells.
The intended readership of the journal includes virologists, microbiologists, immunologists, infectious disease specialists, diagnostic laboratory technologists, epidemiologists, hematologists, and cell biologists.
The Journal of Medical Virology is indexed and abstracted in various databases, including Abstracts in Anthropology (Sage), CABI, AgBiotech News & Information, National Agricultural Library, Biological Abstracts, Embase, Global Health, Web of Science, Veterinary Bulletin, and others.