Hafiza Umaira Shams, Shahla Nazneen, Sardar Khan, Neelum Ali
{"title":"鸡粪和玉米芯炭在减少臭氧对辣椒植物危害中的作用","authors":"Hafiza Umaira Shams, Shahla Nazneen, Sardar Khan, Neelum Ali","doi":"10.1007/s11270-025-08118-4","DOIUrl":null,"url":null,"abstract":"<div><p>This study aims to assess the effect of tropospheric ozone (O<sub>3</sub>) on chili (Capsicum annuum L.) yield and nutritional quality using two types of biochar (poultry manure, and corn cob) with 1% and 2% concentrations in the field. O<sub>3</sub> concentration ranged from 5 to 110 ppb, with an average of 43–59 ppb and AOT40 values exceeded by 6 ppm h over a 3-month period. Weekly assessments were carried out for plant height, leaf length, number of leaves, flowers, fruits, chlorophyll and elemental (Na, Fe, Mg, Mn), and enzymatic (Catalase, Flavonoids, Glutathione, Malon De aldehyde, Superoxide dismutase, Phospho<i>enol</i>pyruvate, Phosphoenolpyruvate carboxylase) contents. Moisture, ash, protein and nitrogen analysis were conducted for leaves, roots, stems and fruits. Specifically, the number of leaves, leaf length, chlorophyll content, and number of fruits increased by 57%, 50%, 63% and 84.6%, respectively, for poultry manure 2%, followed by poultry manure 1%. Similarly, better elemental results were obtained for root, stem and leaves in the range of 10.3% to 60.2% for poultry manure 2% as compared to other treatments. Similar results were observed for moisture, ash, nitrogen and protein. Enzymatic analysis showed that the control group experienced significantly higher-level oxidative stress as compared to the treated group, however, this varied across different plant parts. The study concludes that tropospheric O<sub>3</sub> poses a threat to the quality and nutritional value of chili. However, biochar, especially poultry manure 2% effectively protects the plant from the detrimental effects of tropospheric O<sub>3</sub>.</p></div>","PeriodicalId":808,"journal":{"name":"Water, Air, & Soil Pollution","volume":"236 7","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of Poultry Manure and Corn Cob Biochar in Reducing Ozone-Induced Damage to Chili Plant (Capsicum annuum L.)\",\"authors\":\"Hafiza Umaira Shams, Shahla Nazneen, Sardar Khan, Neelum Ali\",\"doi\":\"10.1007/s11270-025-08118-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study aims to assess the effect of tropospheric ozone (O<sub>3</sub>) on chili (Capsicum annuum L.) yield and nutritional quality using two types of biochar (poultry manure, and corn cob) with 1% and 2% concentrations in the field. O<sub>3</sub> concentration ranged from 5 to 110 ppb, with an average of 43–59 ppb and AOT40 values exceeded by 6 ppm h over a 3-month period. Weekly assessments were carried out for plant height, leaf length, number of leaves, flowers, fruits, chlorophyll and elemental (Na, Fe, Mg, Mn), and enzymatic (Catalase, Flavonoids, Glutathione, Malon De aldehyde, Superoxide dismutase, Phospho<i>enol</i>pyruvate, Phosphoenolpyruvate carboxylase) contents. Moisture, ash, protein and nitrogen analysis were conducted for leaves, roots, stems and fruits. Specifically, the number of leaves, leaf length, chlorophyll content, and number of fruits increased by 57%, 50%, 63% and 84.6%, respectively, for poultry manure 2%, followed by poultry manure 1%. Similarly, better elemental results were obtained for root, stem and leaves in the range of 10.3% to 60.2% for poultry manure 2% as compared to other treatments. Similar results were observed for moisture, ash, nitrogen and protein. Enzymatic analysis showed that the control group experienced significantly higher-level oxidative stress as compared to the treated group, however, this varied across different plant parts. The study concludes that tropospheric O<sub>3</sub> poses a threat to the quality and nutritional value of chili. However, biochar, especially poultry manure 2% effectively protects the plant from the detrimental effects of tropospheric O<sub>3</sub>.</p></div>\",\"PeriodicalId\":808,\"journal\":{\"name\":\"Water, Air, & Soil Pollution\",\"volume\":\"236 7\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water, Air, & Soil Pollution\",\"FirstCategoryId\":\"6\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11270-025-08118-4\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water, Air, & Soil Pollution","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s11270-025-08118-4","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Role of Poultry Manure and Corn Cob Biochar in Reducing Ozone-Induced Damage to Chili Plant (Capsicum annuum L.)
This study aims to assess the effect of tropospheric ozone (O3) on chili (Capsicum annuum L.) yield and nutritional quality using two types of biochar (poultry manure, and corn cob) with 1% and 2% concentrations in the field. O3 concentration ranged from 5 to 110 ppb, with an average of 43–59 ppb and AOT40 values exceeded by 6 ppm h over a 3-month period. Weekly assessments were carried out for plant height, leaf length, number of leaves, flowers, fruits, chlorophyll and elemental (Na, Fe, Mg, Mn), and enzymatic (Catalase, Flavonoids, Glutathione, Malon De aldehyde, Superoxide dismutase, Phosphoenolpyruvate, Phosphoenolpyruvate carboxylase) contents. Moisture, ash, protein and nitrogen analysis were conducted for leaves, roots, stems and fruits. Specifically, the number of leaves, leaf length, chlorophyll content, and number of fruits increased by 57%, 50%, 63% and 84.6%, respectively, for poultry manure 2%, followed by poultry manure 1%. Similarly, better elemental results were obtained for root, stem and leaves in the range of 10.3% to 60.2% for poultry manure 2% as compared to other treatments. Similar results were observed for moisture, ash, nitrogen and protein. Enzymatic analysis showed that the control group experienced significantly higher-level oxidative stress as compared to the treated group, however, this varied across different plant parts. The study concludes that tropospheric O3 poses a threat to the quality and nutritional value of chili. However, biochar, especially poultry manure 2% effectively protects the plant from the detrimental effects of tropospheric O3.
期刊介绍:
Water, Air, & Soil Pollution is an international, interdisciplinary journal on all aspects of pollution and solutions to pollution in the biosphere. This includes chemical, physical and biological processes affecting flora, fauna, water, air and soil in relation to environmental pollution. Because of its scope, the subject areas are diverse and include all aspects of pollution sources, transport, deposition, accumulation, acid precipitation, atmospheric pollution, metals, aquatic pollution including marine pollution and ground water, waste water, pesticides, soil pollution, sewage, sediment pollution, forestry pollution, effects of pollutants on humans, vegetation, fish, aquatic species, micro-organisms, and animals, environmental and molecular toxicology applied to pollution research, biosensors, global and climate change, ecological implications of pollution and pollution models. Water, Air, & Soil Pollution also publishes manuscripts on novel methods used in the study of environmental pollutants, environmental toxicology, environmental biology, novel environmental engineering related to pollution, biodiversity as influenced by pollution, novel environmental biotechnology as applied to pollution (e.g. bioremediation), environmental modelling and biorestoration of polluted environments.
Articles should not be submitted that are of local interest only and do not advance international knowledge in environmental pollution and solutions to pollution. Articles that simply replicate known knowledge or techniques while researching a local pollution problem will normally be rejected without review. Submitted articles must have up-to-date references, employ the correct experimental replication and statistical analysis, where needed and contain a significant contribution to new knowledge. The publishing and editorial team sincerely appreciate your cooperation.
Water, Air, & Soil Pollution publishes research papers; review articles; mini-reviews; and book reviews.