关于Hopfian和Co-Hopfian S-Acts的注解

IF 1.4 4区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES
Mohammad Roueentan, Roghaieh Khosravi
{"title":"关于Hopfian和Co-Hopfian S-Acts的注解","authors":"Mohammad Roueentan,&nbsp;Roghaieh Khosravi","doi":"10.1007/s40995-024-01753-2","DOIUrl":null,"url":null,"abstract":"<div><p>The main purpose of this work is to investigate of the notions Hopfian (co-Hopfian) acts in which their surjective (injective) endomorphisms are isomorphisms. While we study conditions that are relevant to these classes of acts, their interrelationship with some other concepts for example quasi-injective and Dedekind-finite acts is studied. Using Hopfian and co-Hopfian concepts, we provide several conditions for a quasi-injective act to be Dedekind-finite.</p></div>","PeriodicalId":600,"journal":{"name":"Iranian Journal of Science and Technology, Transactions A: Science","volume":"49 3","pages":"789 - 794"},"PeriodicalIF":1.4000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Note on Hopfian and Co-Hopfian S-Acts\",\"authors\":\"Mohammad Roueentan,&nbsp;Roghaieh Khosravi\",\"doi\":\"10.1007/s40995-024-01753-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The main purpose of this work is to investigate of the notions Hopfian (co-Hopfian) acts in which their surjective (injective) endomorphisms are isomorphisms. While we study conditions that are relevant to these classes of acts, their interrelationship with some other concepts for example quasi-injective and Dedekind-finite acts is studied. Using Hopfian and co-Hopfian concepts, we provide several conditions for a quasi-injective act to be Dedekind-finite.</p></div>\",\"PeriodicalId\":600,\"journal\":{\"name\":\"Iranian Journal of Science and Technology, Transactions A: Science\",\"volume\":\"49 3\",\"pages\":\"789 - 794\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Science and Technology, Transactions A: Science\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40995-024-01753-2\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Science and Technology, Transactions A: Science","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s40995-024-01753-2","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本研究的主要目的是探讨Hopfian(共Hopfian)行为中满射(单射)自同构的概念。当我们研究与这类行为相关的条件时,我们研究了它们与其他一些概念的相互关系,例如拟内射和dedekind有限行为。利用Hopfian和co-Hopfian概念,给出了拟内射行为是dedekind有限的几个条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Note on Hopfian and Co-Hopfian S-Acts

The main purpose of this work is to investigate of the notions Hopfian (co-Hopfian) acts in which their surjective (injective) endomorphisms are isomorphisms. While we study conditions that are relevant to these classes of acts, their interrelationship with some other concepts for example quasi-injective and Dedekind-finite acts is studied. Using Hopfian and co-Hopfian concepts, we provide several conditions for a quasi-injective act to be Dedekind-finite.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
5.90%
发文量
122
审稿时长
>12 weeks
期刊介绍: The aim of this journal is to foster the growth of scientific research among Iranian scientists and to provide a medium which brings the fruits of their research to the attention of the world’s scientific community. The journal publishes original research findings – which may be theoretical, experimental or both - reviews, techniques, and comments spanning all subjects in the field of basic sciences, including Physics, Chemistry, Mathematics, Statistics, Biology and Earth Sciences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信