Ummugulsum Tukenmez Emre, Seda Sirin, Serap Nigdelioglu Dolanbay, Belma Aslim
{"title":"利用多糖进行可持续食品包装","authors":"Ummugulsum Tukenmez Emre, Seda Sirin, Serap Nigdelioglu Dolanbay, Belma Aslim","doi":"10.1007/s00289-025-05659-w","DOIUrl":null,"url":null,"abstract":"<div><p>This review provides a comprehensive analysis of food packaging techniques, focusing on the limitations of conventional methods and the promising potential of polysaccharide-based materials as sustainable alternatives. Traditional packaging materials, such as plastics, glass, metal, and paper, pose significant environmental risks due to their non-biodegradable nature. In contrast, polysaccharide-based materials, derived from renewable sources, are biodegradable and offer enhanced food preservation properties. These materials boast several advantages, including biodegradability, renewability, and superior physical attributes such as excellent barrier properties and mechanical strength. The review also delves into transformation techniques aimed at improving the effectiveness of polysaccharide-based materials. These include physical and chemical modifications to optimize their performance. Furthermore, a detailed categorization of polysaccharides is provided based on their origin, encompassing animal-derived polysaccharides (chitin, chitosan), plant-derived polysaccharides (cellulose, starch, pectin, gum arabic, guar gum, tragacanth gum, locust bean gum), marine-derived polysaccharides (alginate, agar, carrageenan), and microbial-derived polysaccharides (pullulan, xanthan gum, dextran, bacterial cellulose). Additionally, we explore case studies highlighting the practical applications and performances of these materials in the food packaging industry.</p></div>","PeriodicalId":737,"journal":{"name":"Polymer Bulletin","volume":"82 8","pages":"2779 - 2825"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00289-025-05659-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Harnessing polysaccharides for sustainable food packaging\",\"authors\":\"Ummugulsum Tukenmez Emre, Seda Sirin, Serap Nigdelioglu Dolanbay, Belma Aslim\",\"doi\":\"10.1007/s00289-025-05659-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This review provides a comprehensive analysis of food packaging techniques, focusing on the limitations of conventional methods and the promising potential of polysaccharide-based materials as sustainable alternatives. Traditional packaging materials, such as plastics, glass, metal, and paper, pose significant environmental risks due to their non-biodegradable nature. In contrast, polysaccharide-based materials, derived from renewable sources, are biodegradable and offer enhanced food preservation properties. These materials boast several advantages, including biodegradability, renewability, and superior physical attributes such as excellent barrier properties and mechanical strength. The review also delves into transformation techniques aimed at improving the effectiveness of polysaccharide-based materials. These include physical and chemical modifications to optimize their performance. Furthermore, a detailed categorization of polysaccharides is provided based on their origin, encompassing animal-derived polysaccharides (chitin, chitosan), plant-derived polysaccharides (cellulose, starch, pectin, gum arabic, guar gum, tragacanth gum, locust bean gum), marine-derived polysaccharides (alginate, agar, carrageenan), and microbial-derived polysaccharides (pullulan, xanthan gum, dextran, bacterial cellulose). Additionally, we explore case studies highlighting the practical applications and performances of these materials in the food packaging industry.</p></div>\",\"PeriodicalId\":737,\"journal\":{\"name\":\"Polymer Bulletin\",\"volume\":\"82 8\",\"pages\":\"2779 - 2825\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00289-025-05659-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Bulletin\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00289-025-05659-w\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Bulletin","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00289-025-05659-w","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Harnessing polysaccharides for sustainable food packaging
This review provides a comprehensive analysis of food packaging techniques, focusing on the limitations of conventional methods and the promising potential of polysaccharide-based materials as sustainable alternatives. Traditional packaging materials, such as plastics, glass, metal, and paper, pose significant environmental risks due to their non-biodegradable nature. In contrast, polysaccharide-based materials, derived from renewable sources, are biodegradable and offer enhanced food preservation properties. These materials boast several advantages, including biodegradability, renewability, and superior physical attributes such as excellent barrier properties and mechanical strength. The review also delves into transformation techniques aimed at improving the effectiveness of polysaccharide-based materials. These include physical and chemical modifications to optimize their performance. Furthermore, a detailed categorization of polysaccharides is provided based on their origin, encompassing animal-derived polysaccharides (chitin, chitosan), plant-derived polysaccharides (cellulose, starch, pectin, gum arabic, guar gum, tragacanth gum, locust bean gum), marine-derived polysaccharides (alginate, agar, carrageenan), and microbial-derived polysaccharides (pullulan, xanthan gum, dextran, bacterial cellulose). Additionally, we explore case studies highlighting the practical applications and performances of these materials in the food packaging industry.
期刊介绍:
"Polymer Bulletin" is a comprehensive academic journal on polymer science founded in 1988. It was founded under the initiative of the late Mr. Wang Baoren, a famous Chinese chemist and educator. This journal is co-sponsored by the Chinese Chemical Society, the Institute of Chemistry, and the Chinese Academy of Sciences and is supervised by the China Association for Science and Technology. It is a core journal and is publicly distributed at home and abroad.
"Polymer Bulletin" is a monthly magazine with multiple columns, including a project application guide, outlook, review, research papers, highlight reviews, polymer education and teaching, information sharing, interviews, polymer science popularization, etc. The journal is included in the CSCD Chinese Science Citation Database. It serves as the source journal for Chinese scientific and technological paper statistics and the source journal of Peking University's "Overview of Chinese Core Journals."