来自\({\mathbb {Z}}_{2}[u]{\mathbb {Z}}_{2}[u,v]\)的二进制最优码-加性循环码和加性恒循环码

IF 1.4 4区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES
Mohd Asim, Mohammad Ashraf, Ghulam Mohammad, Washiqur Rehman, Naim Khan
{"title":"来自\\({\\mathbb {Z}}_{2}[u]{\\mathbb {Z}}_{2}[u,v]\\)的二进制最优码-加性循环码和加性恒循环码","authors":"Mohd Asim,&nbsp;Mohammad Ashraf,&nbsp;Ghulam Mohammad,&nbsp;Washiqur Rehman,&nbsp;Naim Khan","doi":"10.1007/s40995-025-01781-6","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\({\\mathfrak {R}}={\\mathbb {Z}}_{2}+u{\\mathbb {Z}}_{2}\\)</span>, where <span>\\(u^2=0\\)</span>, and <span>\\({\\textbf {S}}={\\mathbb {Z}}_{2}+u{\\mathbb {Z}}_{2}+v{\\mathbb {Z}}_{2}+uv{\\mathbb {Z}}_{2}\\)</span>, where <span>\\(u^{2}=v^{2}=0\\)</span>, <span>\\(uv=vu\\)</span>. In this article, we study <span>\\({\\mathfrak {R}} {\\textbf {S}}\\)</span>-additive cyclic, additive constacyclic, and additive dual codes. We find the structural properties of these codes. The code <i>C</i> is characterized as an <span>\\({\\textbf {S}}[y]\\)</span>-submodules of the ring <span>\\({\\textbf {S}}_{\\beta _{1},\\beta _{2}}={{\\mathfrak {R}}[y]/\\langle y^{\\beta _{1}}-1\\rangle }\\times {{\\textbf {S}}[y]/\\langle y^{\\beta _{2}}-1\\rangle }\\)</span>. We define the extended Gray map <span>\\(\\Psi _{1}:{\\mathfrak {R}}^{\\beta _{1}}\\times {\\textbf {S}}^{\\beta _2}\\longrightarrow {\\mathbb {Z}}_{2}^{n}\\)</span> and use this map to find the binary images with good parameters. We also obtain the minimal generating polynomials and minimal spanning sets of the above-mentioned codes. Further, we provide some examples to support of <span>\\({\\mathfrak {R}} {\\textbf {S}}\\)</span>-additive cyclic codes. Finally, we present a Table 1 of optimal binary codes.</p></div>","PeriodicalId":600,"journal":{"name":"Iranian Journal of Science and Technology, Transactions A: Science","volume":"49 3","pages":"697 - 709"},"PeriodicalIF":1.4000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Binary Optimal Codes from \\\\({\\\\mathbb {Z}}_{2}[u]{\\\\mathbb {Z}}_{2}[u,v]\\\\)-Additive Cyclic and Additive Constacyclic Codes\",\"authors\":\"Mohd Asim,&nbsp;Mohammad Ashraf,&nbsp;Ghulam Mohammad,&nbsp;Washiqur Rehman,&nbsp;Naim Khan\",\"doi\":\"10.1007/s40995-025-01781-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\({\\\\mathfrak {R}}={\\\\mathbb {Z}}_{2}+u{\\\\mathbb {Z}}_{2}\\\\)</span>, where <span>\\\\(u^2=0\\\\)</span>, and <span>\\\\({\\\\textbf {S}}={\\\\mathbb {Z}}_{2}+u{\\\\mathbb {Z}}_{2}+v{\\\\mathbb {Z}}_{2}+uv{\\\\mathbb {Z}}_{2}\\\\)</span>, where <span>\\\\(u^{2}=v^{2}=0\\\\)</span>, <span>\\\\(uv=vu\\\\)</span>. In this article, we study <span>\\\\({\\\\mathfrak {R}} {\\\\textbf {S}}\\\\)</span>-additive cyclic, additive constacyclic, and additive dual codes. We find the structural properties of these codes. The code <i>C</i> is characterized as an <span>\\\\({\\\\textbf {S}}[y]\\\\)</span>-submodules of the ring <span>\\\\({\\\\textbf {S}}_{\\\\beta _{1},\\\\beta _{2}}={{\\\\mathfrak {R}}[y]/\\\\langle y^{\\\\beta _{1}}-1\\\\rangle }\\\\times {{\\\\textbf {S}}[y]/\\\\langle y^{\\\\beta _{2}}-1\\\\rangle }\\\\)</span>. We define the extended Gray map <span>\\\\(\\\\Psi _{1}:{\\\\mathfrak {R}}^{\\\\beta _{1}}\\\\times {\\\\textbf {S}}^{\\\\beta _2}\\\\longrightarrow {\\\\mathbb {Z}}_{2}^{n}\\\\)</span> and use this map to find the binary images with good parameters. We also obtain the minimal generating polynomials and minimal spanning sets of the above-mentioned codes. Further, we provide some examples to support of <span>\\\\({\\\\mathfrak {R}} {\\\\textbf {S}}\\\\)</span>-additive cyclic codes. Finally, we present a Table 1 of optimal binary codes.</p></div>\",\"PeriodicalId\":600,\"journal\":{\"name\":\"Iranian Journal of Science and Technology, Transactions A: Science\",\"volume\":\"49 3\",\"pages\":\"697 - 709\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Science and Technology, Transactions A: Science\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40995-025-01781-6\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Science and Technology, Transactions A: Science","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s40995-025-01781-6","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

让\({\mathfrak {R}}={\mathbb {Z}}_{2}+u{\mathbb {Z}}_{2}\),原来是\(u^2=0\), \({\textbf {S}}={\mathbb {Z}}_{2}+u{\mathbb {Z}}_{2}+v{\mathbb {Z}}_{2}+uv{\mathbb {Z}}_{2}\),原来是\(u^{2}=v^{2}=0\), \(uv=vu\)。本文研究了\({\mathfrak {R}} {\textbf {S}}\) -加性环码、加性恒环码和加性对偶码。我们发现了这些代码的结构特性。代码C的特征是\({\textbf {S}}[y]\) -环\({\textbf {S}}_{\beta _{1},\beta _{2}}={{\mathfrak {R}}[y]/\langle y^{\beta _{1}}-1\rangle }\times {{\textbf {S}}[y]/\langle y^{\beta _{2}}-1\rangle }\)的子模块。我们定义了扩展的灰度图\(\Psi _{1}:{\mathfrak {R}}^{\beta _{1}}\times {\textbf {S}}^{\beta _2}\longrightarrow {\mathbb {Z}}_{2}^{n}\),并使用该图找到具有良好参数的二值图像。得到了上述码的最小生成多项式和最小生成集。此外,我们还提供了一些例子来支持\({\mathfrak {R}} {\textbf {S}}\) -加性循环码。最后,我们给出了最优二进制码的表1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Binary Optimal Codes from \({\mathbb {Z}}_{2}[u]{\mathbb {Z}}_{2}[u,v]\)-Additive Cyclic and Additive Constacyclic Codes

Let \({\mathfrak {R}}={\mathbb {Z}}_{2}+u{\mathbb {Z}}_{2}\), where \(u^2=0\), and \({\textbf {S}}={\mathbb {Z}}_{2}+u{\mathbb {Z}}_{2}+v{\mathbb {Z}}_{2}+uv{\mathbb {Z}}_{2}\), where \(u^{2}=v^{2}=0\), \(uv=vu\). In this article, we study \({\mathfrak {R}} {\textbf {S}}\)-additive cyclic, additive constacyclic, and additive dual codes. We find the structural properties of these codes. The code C is characterized as an \({\textbf {S}}[y]\)-submodules of the ring \({\textbf {S}}_{\beta _{1},\beta _{2}}={{\mathfrak {R}}[y]/\langle y^{\beta _{1}}-1\rangle }\times {{\textbf {S}}[y]/\langle y^{\beta _{2}}-1\rangle }\). We define the extended Gray map \(\Psi _{1}:{\mathfrak {R}}^{\beta _{1}}\times {\textbf {S}}^{\beta _2}\longrightarrow {\mathbb {Z}}_{2}^{n}\) and use this map to find the binary images with good parameters. We also obtain the minimal generating polynomials and minimal spanning sets of the above-mentioned codes. Further, we provide some examples to support of \({\mathfrak {R}} {\textbf {S}}\)-additive cyclic codes. Finally, we present a Table 1 of optimal binary codes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
5.90%
发文量
122
审稿时长
>12 weeks
期刊介绍: The aim of this journal is to foster the growth of scientific research among Iranian scientists and to provide a medium which brings the fruits of their research to the attention of the world’s scientific community. The journal publishes original research findings – which may be theoretical, experimental or both - reviews, techniques, and comments spanning all subjects in the field of basic sciences, including Physics, Chemistry, Mathematics, Statistics, Biology and Earth Sciences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信