非晶Mo-N和结晶Mo2N之间的致密均匀异质界面耦合增强了钠离子的存储

IF 9.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yao-Hui Qu, Zi-Juan Luo, Mao-Hui Yu, Yang Pan, Wen-Xiu He, Shu-Xiao Hu, Ling-Feng Zhu, Fan-Yan Zeng
{"title":"非晶Mo-N和结晶Mo2N之间的致密均匀异质界面耦合增强了钠离子的存储","authors":"Yao-Hui Qu,&nbsp;Zi-Juan Luo,&nbsp;Mao-Hui Yu,&nbsp;Yang Pan,&nbsp;Wen-Xiu He,&nbsp;Shu-Xiao Hu,&nbsp;Ling-Feng Zhu,&nbsp;Fan-Yan Zeng","doi":"10.1007/s12598-024-03144-3","DOIUrl":null,"url":null,"abstract":"<div><p>Optimizing the interfacial environments of electrodes has emerged as an effective strategy to improve their electrochemical properties. Amorphous/crystalline interfacial coupling can effectively utilize the advantages of amorphous materials to optimize the interfacial structure for efficient Na<sup>+</sup> storage. Herein, the dense homologous amorphous/crystalline heterointerfaces are in situ achieved in N-doped carbon nanobundles via self-polymerization and precise nitriding (Mo–N/Mo<sub>2</sub>N@C). The amorphous Mo–N rich in unsaturated vacancy defects provides abundant active sites with isotropic ion-transport channels, and can effectively alleviate structural stress from crystalline Mo<sub>2</sub>N. Meanwhile, the conductive Mo<sub>2</sub>N can facilitate effective electron transfer, augmented further by the carbon encapsulation. Theoretical calculations reveal that the dense heterointerfaces can optimize the electronic structure and shift the d-p orbital centers of Mo and N upward, thereby enhancing the adsorption and mobility of Na<sup>+</sup>, and ultimately improving the charge transport and storage efficiency of the electrode. The Mo–N/Mo<sub>2</sub>N@C as an anode delivers a 46.9% increase in reversible capacity over Mo<sub>2</sub>N@C, reaching 461.1 mAh·g<sup>–1</sup> at 0.1 A·g<sup>–1</sup>, along with improved rate capability and cycling stability, underlining its practical utility. These results suggest that the homologous interfacial coupling can boost the storage properties of nitrides, providing a valuable reference for improving the properties of electrodes with low theoretical capacities.</p><h3>Graphic abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":"44 6","pages":"3827 - 3838"},"PeriodicalIF":9.6000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dense homogeneous hetero-interfacial coupling between amorphous Mo–N and crystalline Mo2N for enhanced sodium-ion storage\",\"authors\":\"Yao-Hui Qu,&nbsp;Zi-Juan Luo,&nbsp;Mao-Hui Yu,&nbsp;Yang Pan,&nbsp;Wen-Xiu He,&nbsp;Shu-Xiao Hu,&nbsp;Ling-Feng Zhu,&nbsp;Fan-Yan Zeng\",\"doi\":\"10.1007/s12598-024-03144-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Optimizing the interfacial environments of electrodes has emerged as an effective strategy to improve their electrochemical properties. Amorphous/crystalline interfacial coupling can effectively utilize the advantages of amorphous materials to optimize the interfacial structure for efficient Na<sup>+</sup> storage. Herein, the dense homologous amorphous/crystalline heterointerfaces are in situ achieved in N-doped carbon nanobundles via self-polymerization and precise nitriding (Mo–N/Mo<sub>2</sub>N@C). The amorphous Mo–N rich in unsaturated vacancy defects provides abundant active sites with isotropic ion-transport channels, and can effectively alleviate structural stress from crystalline Mo<sub>2</sub>N. Meanwhile, the conductive Mo<sub>2</sub>N can facilitate effective electron transfer, augmented further by the carbon encapsulation. Theoretical calculations reveal that the dense heterointerfaces can optimize the electronic structure and shift the d-p orbital centers of Mo and N upward, thereby enhancing the adsorption and mobility of Na<sup>+</sup>, and ultimately improving the charge transport and storage efficiency of the electrode. The Mo–N/Mo<sub>2</sub>N@C as an anode delivers a 46.9% increase in reversible capacity over Mo<sub>2</sub>N@C, reaching 461.1 mAh·g<sup>–1</sup> at 0.1 A·g<sup>–1</sup>, along with improved rate capability and cycling stability, underlining its practical utility. These results suggest that the homologous interfacial coupling can boost the storage properties of nitrides, providing a valuable reference for improving the properties of electrodes with low theoretical capacities.</p><h3>Graphic abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":749,\"journal\":{\"name\":\"Rare Metals\",\"volume\":\"44 6\",\"pages\":\"3827 - 3838\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rare Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12598-024-03144-3\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12598-024-03144-3","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

优化电极的界面环境已成为改善电极电化学性能的有效策略。非晶/晶界面耦合可以有效地利用非晶材料的优点,优化界面结构,实现高效的Na+存储。本文通过自聚合和精确氮化,在n掺杂碳纳米束中原位获得了致密的同源非晶/晶异质界面(Mo-N /Mo2N@C)。富含不饱和空位缺陷的无定形Mo-N提供了丰富的具有各向同性离子传输通道的活性位点,可以有效缓解Mo2N晶体的结构应力。同时,导电Mo2N可以促进有效的电子转移,碳包封进一步增强了电子转移。理论计算表明,致密的异质界面可以优化电子结构,使Mo和N的d-p轨道中心向上移动,从而增强Na+的吸附和迁移率,最终提高电极的电荷传输和存储效率。Mo-N /Mo2N@C作为阳极的可逆容量比Mo2N@C增加46.9%,在0.1 a·g-1下达到461.1 mAh·g-1,同时提高了倍率能力和循环稳定性,强调了其实用性。这些结果表明,同源界面耦合可以提高氮化物的存储性能,为提高低理论容量电极的性能提供了有价值的参考。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dense homogeneous hetero-interfacial coupling between amorphous Mo–N and crystalline Mo2N for enhanced sodium-ion storage

Optimizing the interfacial environments of electrodes has emerged as an effective strategy to improve their electrochemical properties. Amorphous/crystalline interfacial coupling can effectively utilize the advantages of amorphous materials to optimize the interfacial structure for efficient Na+ storage. Herein, the dense homologous amorphous/crystalline heterointerfaces are in situ achieved in N-doped carbon nanobundles via self-polymerization and precise nitriding (Mo–N/Mo2N@C). The amorphous Mo–N rich in unsaturated vacancy defects provides abundant active sites with isotropic ion-transport channels, and can effectively alleviate structural stress from crystalline Mo2N. Meanwhile, the conductive Mo2N can facilitate effective electron transfer, augmented further by the carbon encapsulation. Theoretical calculations reveal that the dense heterointerfaces can optimize the electronic structure and shift the d-p orbital centers of Mo and N upward, thereby enhancing the adsorption and mobility of Na+, and ultimately improving the charge transport and storage efficiency of the electrode. The Mo–N/Mo2N@C as an anode delivers a 46.9% increase in reversible capacity over Mo2N@C, reaching 461.1 mAh·g–1 at 0.1 A·g–1, along with improved rate capability and cycling stability, underlining its practical utility. These results suggest that the homologous interfacial coupling can boost the storage properties of nitrides, providing a valuable reference for improving the properties of electrodes with low theoretical capacities.

Graphic abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Rare Metals
Rare Metals 工程技术-材料科学:综合
CiteScore
12.10
自引率
12.50%
发文量
2919
审稿时长
2.7 months
期刊介绍: Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信