熔盐辅助合成高能量密度锂离子电池用表面改性单晶NCM811

IF 9.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Bi-Fu Sheng, Jun-Jie Lu, Zhe-Fei Sun, Min-Feng Chen, Min Xu, Han-Rui Zhao, Qing-Qing Zhou, Chu-Yang Li, Bin Wang, Qiao-Bao Zhang, Ji-Zhang Chen, Xiang Han
{"title":"熔盐辅助合成高能量密度锂离子电池用表面改性单晶NCM811","authors":"Bi-Fu Sheng,&nbsp;Jun-Jie Lu,&nbsp;Zhe-Fei Sun,&nbsp;Min-Feng Chen,&nbsp;Min Xu,&nbsp;Han-Rui Zhao,&nbsp;Qing-Qing Zhou,&nbsp;Chu-Yang Li,&nbsp;Bin Wang,&nbsp;Qiao-Bao Zhang,&nbsp;Ji-Zhang Chen,&nbsp;Xiang Han","doi":"10.1007/s12598-024-03199-2","DOIUrl":null,"url":null,"abstract":"<div><p>Single crystalline nickel rich Li [Ni<sub><i>x</i></sub>Co<sub><i>y</i></sub>Mn<sub>1-x–y</sub>]O<sub>2</sub> (SCNCM) layered oxide cathodes show higher ionic conductivity and better structure integrity than polycrystalline NCM (PCNCM) cathodes by eliminating grain boundaries. However, it remains challenges in the controlled synthesis process and restricted cycling stability of SCNCM. Herein, take single crystalline nickel rich Li [Ni<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>]O<sub>2</sub> (SC811) as an example, a dual molten salts (LiOH and Li<sub>2</sub>SO<sub>4</sub>) assisted secondary calcination method is proposed, for which LiOH salt improves primary crystal size and Li<sub>2</sub>SO<sub>4</sub> prevents the aggravation of NCM nanocrystals. To further reduce the interfacial side reactions, Mg-doping and B-coating surface modification was carried out, which effectively suppress anisotropic lattice changes and Li/Ni disorder. In addition, a thin and uniform H<sub>3</sub>BO<sub>3</sub> coating effectively prevents direct contact between the electrode and electrolyte, thus reducing harmful parasitic reactions. The single crystal structure engineering and surface modification strategy of oxide layered cathodes significantly improve the cycling stability of the modified SC811 cathode. For example, during a long-term cycling of 470 cycles, a high-capacity retention of 74.2% obtained at 1C rate. Our work provides a new strategy for engineering high energy nickel rich layered oxide NCM cathodes.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":"44 6","pages":"3749 - 3760"},"PeriodicalIF":9.6000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molten salts assisted synthesis of single crystalline NCM811 with surface modification for high energy density lithium-ion batteries\",\"authors\":\"Bi-Fu Sheng,&nbsp;Jun-Jie Lu,&nbsp;Zhe-Fei Sun,&nbsp;Min-Feng Chen,&nbsp;Min Xu,&nbsp;Han-Rui Zhao,&nbsp;Qing-Qing Zhou,&nbsp;Chu-Yang Li,&nbsp;Bin Wang,&nbsp;Qiao-Bao Zhang,&nbsp;Ji-Zhang Chen,&nbsp;Xiang Han\",\"doi\":\"10.1007/s12598-024-03199-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Single crystalline nickel rich Li [Ni<sub><i>x</i></sub>Co<sub><i>y</i></sub>Mn<sub>1-x–y</sub>]O<sub>2</sub> (SCNCM) layered oxide cathodes show higher ionic conductivity and better structure integrity than polycrystalline NCM (PCNCM) cathodes by eliminating grain boundaries. However, it remains challenges in the controlled synthesis process and restricted cycling stability of SCNCM. Herein, take single crystalline nickel rich Li [Ni<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>]O<sub>2</sub> (SC811) as an example, a dual molten salts (LiOH and Li<sub>2</sub>SO<sub>4</sub>) assisted secondary calcination method is proposed, for which LiOH salt improves primary crystal size and Li<sub>2</sub>SO<sub>4</sub> prevents the aggravation of NCM nanocrystals. To further reduce the interfacial side reactions, Mg-doping and B-coating surface modification was carried out, which effectively suppress anisotropic lattice changes and Li/Ni disorder. In addition, a thin and uniform H<sub>3</sub>BO<sub>3</sub> coating effectively prevents direct contact between the electrode and electrolyte, thus reducing harmful parasitic reactions. The single crystal structure engineering and surface modification strategy of oxide layered cathodes significantly improve the cycling stability of the modified SC811 cathode. For example, during a long-term cycling of 470 cycles, a high-capacity retention of 74.2% obtained at 1C rate. Our work provides a new strategy for engineering high energy nickel rich layered oxide NCM cathodes.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":749,\"journal\":{\"name\":\"Rare Metals\",\"volume\":\"44 6\",\"pages\":\"3749 - 3760\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rare Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12598-024-03199-2\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12598-024-03199-2","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

单晶富镍Li [NixCoyMn1-x-y]O2 (SCNCM)层状氧化物阴极通过消除晶界,比多晶NCM (PCNCM)阴极具有更高的离子电导率和更好的结构完整性。然而,SCNCM在控制合成过程和限制循环稳定性方面仍然存在挑战。本文以富镍单晶Li [Ni0.8Co0.1Mn0.1]O2 (SC811)为例,提出了一种双熔盐(LiOH和Li2SO4)辅助二次焙烧的方法,其中LiOH盐提高了初晶尺寸,Li2SO4防止了NCM纳米晶的恶化。为了进一步减少界面副反应,通过mg掺杂和b包覆表面改性,有效抑制了各向异性晶格变化和Li/Ni无序性。此外,薄而均匀的H3BO3涂层有效地防止了电极与电解质的直接接触,从而减少了有害的寄生反应。氧化物层状阴极的单晶结构工程和表面改性策略显著提高了改性SC811阴极的循环稳定性。例如,在470次的长期循环中,在1C速率下获得了74.2%的高容量保留率。我们的工作为设计高能富镍层状氧化NCM阴极提供了一种新的策略。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Molten salts assisted synthesis of single crystalline NCM811 with surface modification for high energy density lithium-ion batteries

Single crystalline nickel rich Li [NixCoyMn1-x–y]O2 (SCNCM) layered oxide cathodes show higher ionic conductivity and better structure integrity than polycrystalline NCM (PCNCM) cathodes by eliminating grain boundaries. However, it remains challenges in the controlled synthesis process and restricted cycling stability of SCNCM. Herein, take single crystalline nickel rich Li [Ni0.8Co0.1Mn0.1]O2 (SC811) as an example, a dual molten salts (LiOH and Li2SO4) assisted secondary calcination method is proposed, for which LiOH salt improves primary crystal size and Li2SO4 prevents the aggravation of NCM nanocrystals. To further reduce the interfacial side reactions, Mg-doping and B-coating surface modification was carried out, which effectively suppress anisotropic lattice changes and Li/Ni disorder. In addition, a thin and uniform H3BO3 coating effectively prevents direct contact between the electrode and electrolyte, thus reducing harmful parasitic reactions. The single crystal structure engineering and surface modification strategy of oxide layered cathodes significantly improve the cycling stability of the modified SC811 cathode. For example, during a long-term cycling of 470 cycles, a high-capacity retention of 74.2% obtained at 1C rate. Our work provides a new strategy for engineering high energy nickel rich layered oxide NCM cathodes.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Rare Metals
Rare Metals 工程技术-材料科学:综合
CiteScore
12.10
自引率
12.50%
发文量
2919
审稿时长
2.7 months
期刊介绍: Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信