Barshan Dev, Md Ashikur Rahman, Md Zillur Rahman, S M Kalbin Salim Turjo, Raiyan Jamal Adib, Mehedi Hasan Jeem, Nazmun Nasim
{"title":"单向香蕉/蛇皮纤维增强环氧复合材料的力学性能:实验与数值分析","authors":"Barshan Dev, Md Ashikur Rahman, Md Zillur Rahman, S M Kalbin Salim Turjo, Raiyan Jamal Adib, Mehedi Hasan Jeem, Nazmun Nasim","doi":"10.1007/s00289-025-05658-x","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the mechanical properties of composites through the hybridization of banana and snake plant (SP) fibers with a unidirectional (UD) fiber arrangement. The UD preforms are made with various weight ratios of banana/SP fibers (100/0, 75/25, 50/50, 25/75, and 0/100) and then incorporated into the epoxy resin by the hand lay-up method to fabricate composites. Their mechanical properties (tensile, flexural, impact, and hardness), fracture morphologies, and water absorption are then evaluated. Numerical analysis of the mechanical properties of hybrid composites is also carried out. It is observed that with increasing SP fiber content, the mechanical properties of composites (tensile, flexural, impact, and hardness) tend to rise, and the water absorption of composites declines. The 25% banana/75% SP fiber composite exhibits the minimum water absorption of 11.29% after 120 h, with improved tensile modulus and strength of 1.79 GPa and 53.74 MPa, and flexural modulus and strength of 1.50 GPa and 130.86 MPa, respectively, and impact strength of 65.42 kJ/m<sup>2</sup>, among other hybrids, and maximum hardness (64.2 Shore D), among all UD composites. Additionally, the mechanical performance of the UD 100% SP fiber composite is found to be noteworthy. Finite element analysis shows that composites’ tensile and flexural strengths are in excellent agreement with their experimental findings. Furthermore, fracture morphologies indicate that composites fail due to fiber pullout, fiber breakage, fiber-matrix debonding, and voids. This study provides some insights to promote the application of manufactured UD composites in the internal structures of automobiles, aircraft, and trains.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":737,"journal":{"name":"Polymer Bulletin","volume":"82 8","pages":"3145 - 3174"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical properties of unidirectional banana/snake plant fiber-reinforced epoxy hybrid composites: experimental and numerical analyses\",\"authors\":\"Barshan Dev, Md Ashikur Rahman, Md Zillur Rahman, S M Kalbin Salim Turjo, Raiyan Jamal Adib, Mehedi Hasan Jeem, Nazmun Nasim\",\"doi\":\"10.1007/s00289-025-05658-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study investigates the mechanical properties of composites through the hybridization of banana and snake plant (SP) fibers with a unidirectional (UD) fiber arrangement. The UD preforms are made with various weight ratios of banana/SP fibers (100/0, 75/25, 50/50, 25/75, and 0/100) and then incorporated into the epoxy resin by the hand lay-up method to fabricate composites. Their mechanical properties (tensile, flexural, impact, and hardness), fracture morphologies, and water absorption are then evaluated. Numerical analysis of the mechanical properties of hybrid composites is also carried out. It is observed that with increasing SP fiber content, the mechanical properties of composites (tensile, flexural, impact, and hardness) tend to rise, and the water absorption of composites declines. The 25% banana/75% SP fiber composite exhibits the minimum water absorption of 11.29% after 120 h, with improved tensile modulus and strength of 1.79 GPa and 53.74 MPa, and flexural modulus and strength of 1.50 GPa and 130.86 MPa, respectively, and impact strength of 65.42 kJ/m<sup>2</sup>, among other hybrids, and maximum hardness (64.2 Shore D), among all UD composites. Additionally, the mechanical performance of the UD 100% SP fiber composite is found to be noteworthy. Finite element analysis shows that composites’ tensile and flexural strengths are in excellent agreement with their experimental findings. Furthermore, fracture morphologies indicate that composites fail due to fiber pullout, fiber breakage, fiber-matrix debonding, and voids. This study provides some insights to promote the application of manufactured UD composites in the internal structures of automobiles, aircraft, and trains.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":737,\"journal\":{\"name\":\"Polymer Bulletin\",\"volume\":\"82 8\",\"pages\":\"3145 - 3174\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Bulletin\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00289-025-05658-x\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Bulletin","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00289-025-05658-x","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Mechanical properties of unidirectional banana/snake plant fiber-reinforced epoxy hybrid composites: experimental and numerical analyses
This study investigates the mechanical properties of composites through the hybridization of banana and snake plant (SP) fibers with a unidirectional (UD) fiber arrangement. The UD preforms are made with various weight ratios of banana/SP fibers (100/0, 75/25, 50/50, 25/75, and 0/100) and then incorporated into the epoxy resin by the hand lay-up method to fabricate composites. Their mechanical properties (tensile, flexural, impact, and hardness), fracture morphologies, and water absorption are then evaluated. Numerical analysis of the mechanical properties of hybrid composites is also carried out. It is observed that with increasing SP fiber content, the mechanical properties of composites (tensile, flexural, impact, and hardness) tend to rise, and the water absorption of composites declines. The 25% banana/75% SP fiber composite exhibits the minimum water absorption of 11.29% after 120 h, with improved tensile modulus and strength of 1.79 GPa and 53.74 MPa, and flexural modulus and strength of 1.50 GPa and 130.86 MPa, respectively, and impact strength of 65.42 kJ/m2, among other hybrids, and maximum hardness (64.2 Shore D), among all UD composites. Additionally, the mechanical performance of the UD 100% SP fiber composite is found to be noteworthy. Finite element analysis shows that composites’ tensile and flexural strengths are in excellent agreement with their experimental findings. Furthermore, fracture morphologies indicate that composites fail due to fiber pullout, fiber breakage, fiber-matrix debonding, and voids. This study provides some insights to promote the application of manufactured UD composites in the internal structures of automobiles, aircraft, and trains.
期刊介绍:
"Polymer Bulletin" is a comprehensive academic journal on polymer science founded in 1988. It was founded under the initiative of the late Mr. Wang Baoren, a famous Chinese chemist and educator. This journal is co-sponsored by the Chinese Chemical Society, the Institute of Chemistry, and the Chinese Academy of Sciences and is supervised by the China Association for Science and Technology. It is a core journal and is publicly distributed at home and abroad.
"Polymer Bulletin" is a monthly magazine with multiple columns, including a project application guide, outlook, review, research papers, highlight reviews, polymer education and teaching, information sharing, interviews, polymer science popularization, etc. The journal is included in the CSCD Chinese Science Citation Database. It serves as the source journal for Chinese scientific and technological paper statistics and the source journal of Peking University's "Overview of Chinese Core Journals."