\(S^{2}_{1}\)和\(H^{2}_{0}\)上一种新的修正正交Saban框架及其曲线演化

IF 1.4 4区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES
Alperen Kızılay, Atakan Tuğkan Yakut
{"title":"\\(S^{2}_{1}\\)和\\(H^{2}_{0}\\)上一种新的修正正交Saban框架及其曲线演化","authors":"Alperen Kızılay,&nbsp;Atakan Tuğkan Yakut","doi":"10.1007/s40995-024-01767-w","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we describe a new modified orthogonal Saban frame for timelike and spacelike curves with geodesic curvature on <span>\\(S^{2}_{1}\\)</span> and the Saban frame for hyperbolic curves with geodesic curvature on <span>\\(H^{2}_{0}\\)</span>. We study the evolution of curves depending on the modified orthogonal Sabban frame and we obtain the necessary conditions for the inextensible flow of curves on modified orthogonal Saban frame.</p></div>","PeriodicalId":600,"journal":{"name":"Iranian Journal of Science and Technology, Transactions A: Science","volume":"49 3","pages":"833 - 846"},"PeriodicalIF":1.4000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Modified Orthogonal Saban Frame on \\\\(S^{2}_{1}\\\\) and \\\\(H^{2}_{0}\\\\) and the Evolution of Curves\",\"authors\":\"Alperen Kızılay,&nbsp;Atakan Tuğkan Yakut\",\"doi\":\"10.1007/s40995-024-01767-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we describe a new modified orthogonal Saban frame for timelike and spacelike curves with geodesic curvature on <span>\\\\(S^{2}_{1}\\\\)</span> and the Saban frame for hyperbolic curves with geodesic curvature on <span>\\\\(H^{2}_{0}\\\\)</span>. We study the evolution of curves depending on the modified orthogonal Sabban frame and we obtain the necessary conditions for the inextensible flow of curves on modified orthogonal Saban frame.</p></div>\",\"PeriodicalId\":600,\"journal\":{\"name\":\"Iranian Journal of Science and Technology, Transactions A: Science\",\"volume\":\"49 3\",\"pages\":\"833 - 846\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Science and Technology, Transactions A: Science\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40995-024-01767-w\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Science and Technology, Transactions A: Science","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s40995-024-01767-w","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文对\(S^{2}_{1}\)上具有测地线曲率的类时、类空曲线和\(H^{2}_{0}\)上具有测地线曲率的双曲曲线描述了一种新的改进的正交Saban框架。研究了曲线在修正正交Saban框架上的演化,得到了曲线在修正正交Saban框架上不可扩展流动的必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Modified Orthogonal Saban Frame on \(S^{2}_{1}\) and \(H^{2}_{0}\) and the Evolution of Curves

In this paper, we describe a new modified orthogonal Saban frame for timelike and spacelike curves with geodesic curvature on \(S^{2}_{1}\) and the Saban frame for hyperbolic curves with geodesic curvature on \(H^{2}_{0}\). We study the evolution of curves depending on the modified orthogonal Sabban frame and we obtain the necessary conditions for the inextensible flow of curves on modified orthogonal Saban frame.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
5.90%
发文量
122
审稿时长
>12 weeks
期刊介绍: The aim of this journal is to foster the growth of scientific research among Iranian scientists and to provide a medium which brings the fruits of their research to the attention of the world’s scientific community. The journal publishes original research findings – which may be theoretical, experimental or both - reviews, techniques, and comments spanning all subjects in the field of basic sciences, including Physics, Chemistry, Mathematics, Statistics, Biology and Earth Sciences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信