揭示了硅基陶瓷晶体/非晶基复合相变材料界面热输运显著增强的机理

IF 9.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ling-Yue Li, Lin Qiu, Ning Cao, Lei Xu, Li-Zhong Yang, Jie Lin, Yan-Hui Feng
{"title":"揭示了硅基陶瓷晶体/非晶基复合相变材料界面热输运显著增强的机理","authors":"Ling-Yue Li,&nbsp;Lin Qiu,&nbsp;Ning Cao,&nbsp;Lei Xu,&nbsp;Li-Zhong Yang,&nbsp;Jie Lin,&nbsp;Yan-Hui Feng","doi":"10.1007/s12598-025-03301-2","DOIUrl":null,"url":null,"abstract":"<p>Investigating thermal transport mechanisms at the interface between phase change materials (PCMs) and high thermally conductive fillers has become increasingly significant in developing phase change energy storage technologies. This study explores the interfacial thermal transport between a representative PCM, erythritol, and various fillers, including crystalline (SiC, Si<sub>3</sub>N<sub>4</sub>) and amorphous (SiO<sub>2</sub>) nanoparticles, using molecular dynamics (MD) simulations. Additionally, time-domain thermoreflectance (TDTR) experiments were performed to quantify the interfacial thermal conductance between erythritol and the three types of fillers, yielding values of 50.1, 40.0, and 25.6 MW m<sup>–2</sup> K<sup>−1</sup>. These results align well with the trends observed in the simulations. Furthermore, the underlying mechanisms of interfacial heat transfer were analyzed by examining the phonon density of states, overlap energy, and interaction energy. This research provides innovative insights into nanoscale interfacial thermal transport in composite PCMs. This could lead to significant advancements in thermal management technologies, particularly in developing more efficient thermal energy storage systems.</p>","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":"44 6","pages":"4107 - 4118"},"PeriodicalIF":9.6000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revealing the mechanism of significant enhancement in interfacial thermal transport in silicon-based ceramic crystalline/amorphous matrix composite phase change materials\",\"authors\":\"Ling-Yue Li,&nbsp;Lin Qiu,&nbsp;Ning Cao,&nbsp;Lei Xu,&nbsp;Li-Zhong Yang,&nbsp;Jie Lin,&nbsp;Yan-Hui Feng\",\"doi\":\"10.1007/s12598-025-03301-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Investigating thermal transport mechanisms at the interface between phase change materials (PCMs) and high thermally conductive fillers has become increasingly significant in developing phase change energy storage technologies. This study explores the interfacial thermal transport between a representative PCM, erythritol, and various fillers, including crystalline (SiC, Si<sub>3</sub>N<sub>4</sub>) and amorphous (SiO<sub>2</sub>) nanoparticles, using molecular dynamics (MD) simulations. Additionally, time-domain thermoreflectance (TDTR) experiments were performed to quantify the interfacial thermal conductance between erythritol and the three types of fillers, yielding values of 50.1, 40.0, and 25.6 MW m<sup>–2</sup> K<sup>−1</sup>. These results align well with the trends observed in the simulations. Furthermore, the underlying mechanisms of interfacial heat transfer were analyzed by examining the phonon density of states, overlap energy, and interaction energy. This research provides innovative insights into nanoscale interfacial thermal transport in composite PCMs. This could lead to significant advancements in thermal management technologies, particularly in developing more efficient thermal energy storage systems.</p>\",\"PeriodicalId\":749,\"journal\":{\"name\":\"Rare Metals\",\"volume\":\"44 6\",\"pages\":\"4107 - 4118\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rare Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12598-025-03301-2\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12598-025-03301-2","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

研究相变材料(PCMs)与高导热填料之间界面的热传输机制在相变储能技术的发展中变得越来越重要。本研究利用分子动力学(MD)模拟,探讨了具有代表性的PCM、赤四醇和各种填料(包括晶体(SiC, Si3N4)和非晶(SiO2)纳米颗粒)之间的界面热传递。此外,还进行了时域热反射(TDTR)实验来量化赤藓糖醇与三种类型填料之间的界面热导率,产生值分别为50.1,40.0和25.6 MW m-2 K−1。这些结果与模拟中观察到的趋势非常吻合。此外,通过分析声子态密度、重叠能和相互作用能,分析了界面传热的潜在机制。该研究为复合相变材料的纳米级界面热传输提供了创新的见解。这可能会导致热管理技术的重大进步,特别是在开发更有效的热能储存系统方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Revealing the mechanism of significant enhancement in interfacial thermal transport in silicon-based ceramic crystalline/amorphous matrix composite phase change materials

Investigating thermal transport mechanisms at the interface between phase change materials (PCMs) and high thermally conductive fillers has become increasingly significant in developing phase change energy storage technologies. This study explores the interfacial thermal transport between a representative PCM, erythritol, and various fillers, including crystalline (SiC, Si3N4) and amorphous (SiO2) nanoparticles, using molecular dynamics (MD) simulations. Additionally, time-domain thermoreflectance (TDTR) experiments were performed to quantify the interfacial thermal conductance between erythritol and the three types of fillers, yielding values of 50.1, 40.0, and 25.6 MW m–2 K−1. These results align well with the trends observed in the simulations. Furthermore, the underlying mechanisms of interfacial heat transfer were analyzed by examining the phonon density of states, overlap energy, and interaction energy. This research provides innovative insights into nanoscale interfacial thermal transport in composite PCMs. This could lead to significant advancements in thermal management technologies, particularly in developing more efficient thermal energy storage systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Rare Metals
Rare Metals 工程技术-材料科学:综合
CiteScore
12.10
自引率
12.50%
发文量
2919
审稿时长
2.7 months
期刊介绍: Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信