求解分数阶Klein-Gordon方程的Lucas操作矩阵法

IF 1.4 4区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES
A. A. Khajehnasiri, M. Afshar Kermani, T. Allahviranloo
{"title":"求解分数阶Klein-Gordon方程的Lucas操作矩阵法","authors":"A. A. Khajehnasiri,&nbsp;M. Afshar Kermani,&nbsp;T. Allahviranloo","doi":"10.1007/s40995-024-01744-3","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, an efficient computational technique based on Lucas polynomials has been extended to approximately solve a certain class of fractional diffusion equations. Fractional order Lucas polynomials were used to represent the operational matrix of differentiation and integration. Subsequently, the fractional Klein–Gordon equation was reduced to a system of algebraic equations whose solution can be found through suitable algorithms such as Gauss elimination and Newton–Raphson methods. Based on the numerical results obtained, the proposed technique demonstrates a high level of efficiency and precision.</p></div>","PeriodicalId":600,"journal":{"name":"Iranian Journal of Science and Technology, Transactions A: Science","volume":"49 3","pages":"771 - 780"},"PeriodicalIF":1.4000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lucas Operational Matrix Approach for Solving the Fractional Klein–Gordon Equation\",\"authors\":\"A. A. Khajehnasiri,&nbsp;M. Afshar Kermani,&nbsp;T. Allahviranloo\",\"doi\":\"10.1007/s40995-024-01744-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, an efficient computational technique based on Lucas polynomials has been extended to approximately solve a certain class of fractional diffusion equations. Fractional order Lucas polynomials were used to represent the operational matrix of differentiation and integration. Subsequently, the fractional Klein–Gordon equation was reduced to a system of algebraic equations whose solution can be found through suitable algorithms such as Gauss elimination and Newton–Raphson methods. Based on the numerical results obtained, the proposed technique demonstrates a high level of efficiency and precision.</p></div>\",\"PeriodicalId\":600,\"journal\":{\"name\":\"Iranian Journal of Science and Technology, Transactions A: Science\",\"volume\":\"49 3\",\"pages\":\"771 - 780\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Science and Technology, Transactions A: Science\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40995-024-01744-3\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Science and Technology, Transactions A: Science","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s40995-024-01744-3","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文将基于卢卡斯多项式的有效计算方法推广到近似求解一类分数阶扩散方程。采用分数阶Lucas多项式表示微分和积分的运算矩阵。随后,分数阶Klein-Gordon方程被简化为代数方程组,通过高斯消去法和牛顿-拉夫森法等合适的算法求解。数值结果表明,该方法具有较高的效率和精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lucas Operational Matrix Approach for Solving the Fractional Klein–Gordon Equation

In this work, an efficient computational technique based on Lucas polynomials has been extended to approximately solve a certain class of fractional diffusion equations. Fractional order Lucas polynomials were used to represent the operational matrix of differentiation and integration. Subsequently, the fractional Klein–Gordon equation was reduced to a system of algebraic equations whose solution can be found through suitable algorithms such as Gauss elimination and Newton–Raphson methods. Based on the numerical results obtained, the proposed technique demonstrates a high level of efficiency and precision.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
5.90%
发文量
122
审稿时长
>12 weeks
期刊介绍: The aim of this journal is to foster the growth of scientific research among Iranian scientists and to provide a medium which brings the fruits of their research to the attention of the world’s scientific community. The journal publishes original research findings – which may be theoretical, experimental or both - reviews, techniques, and comments spanning all subjects in the field of basic sciences, including Physics, Chemistry, Mathematics, Statistics, Biology and Earth Sciences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信