Cu-Zn双金属改性MXene高效电催化二氧化碳还原甲酸

IF 2.5 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
A. Gengxiong, Yonghui Wang, Liang Wu, Yan Ma, Shangwen Ma, Zuqi Li, Keliang Wu
{"title":"Cu-Zn双金属改性MXene高效电催化二氧化碳还原甲酸","authors":"A. Gengxiong,&nbsp;Yonghui Wang,&nbsp;Liang Wu,&nbsp;Yan Ma,&nbsp;Shangwen Ma,&nbsp;Zuqi Li,&nbsp;Keliang Wu","doi":"10.1007/s00339-025-08580-1","DOIUrl":null,"url":null,"abstract":"<div><p>Efficient methods for carbon dioxide reduction reactions (ECO<sub>2</sub>RR) utilizing electrical energy are of paramount importance, yet the design of catalysts remains a pivotal factor in attaining highly effective ECO<sub>2</sub>RR processes. To circumvent the reliance on precious metals, it is imperative to attain a high degree of selectivity towards formic acid (HCOOH) through the regulation of Cu metal. Zinc (Zn), being cost-effective and possessing favorable binding energy towards *COOH, emerges as a promising alternative. To further augment the catalytic activity, we employed the electrostatic self-adsorption capability of Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>MXene to anchor a Cu-Zn bimetallic structure onto its surface. The results demonstrate that the Cu-Zn bimetallic structure is anchored to the Ti vacancies and coupled with the surface functional groups of MXene. The incorporation of Zn markedly enhances the electron transfer to Cu, leading to a notable 87% selectivity for formic acid and a remarkable stability of 16 h. This study elucidates a novel approach for the modification of MXene-based bimetallic catalysts, thereby establishing a foundation for the development of an efficient ECO<sub>2</sub>RR process.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":473,"journal":{"name":"Applied Physics A","volume":"131 6","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cu-Zn bimetal modification of MXene for efficient electrocatalytic carbon dioxide reduction of formic acid\",\"authors\":\"A. Gengxiong,&nbsp;Yonghui Wang,&nbsp;Liang Wu,&nbsp;Yan Ma,&nbsp;Shangwen Ma,&nbsp;Zuqi Li,&nbsp;Keliang Wu\",\"doi\":\"10.1007/s00339-025-08580-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Efficient methods for carbon dioxide reduction reactions (ECO<sub>2</sub>RR) utilizing electrical energy are of paramount importance, yet the design of catalysts remains a pivotal factor in attaining highly effective ECO<sub>2</sub>RR processes. To circumvent the reliance on precious metals, it is imperative to attain a high degree of selectivity towards formic acid (HCOOH) through the regulation of Cu metal. Zinc (Zn), being cost-effective and possessing favorable binding energy towards *COOH, emerges as a promising alternative. To further augment the catalytic activity, we employed the electrostatic self-adsorption capability of Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>MXene to anchor a Cu-Zn bimetallic structure onto its surface. The results demonstrate that the Cu-Zn bimetallic structure is anchored to the Ti vacancies and coupled with the surface functional groups of MXene. The incorporation of Zn markedly enhances the electron transfer to Cu, leading to a notable 87% selectivity for formic acid and a remarkable stability of 16 h. This study elucidates a novel approach for the modification of MXene-based bimetallic catalysts, thereby establishing a foundation for the development of an efficient ECO<sub>2</sub>RR process.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":473,\"journal\":{\"name\":\"Applied Physics A\",\"volume\":\"131 6\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics A\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00339-025-08580-1\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics A","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00339-025-08580-1","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

利用电能进行二氧化碳还原反应(ECO2RR)的高效方法至关重要,但催化剂的设计仍然是实现高效ECO2RR过程的关键因素。为了避免对贵金属的依赖,必须通过调节铜金属来实现对甲酸(HCOOH)的高度选择性。锌(Zn)具有成本效益和对*COOH具有良好的结合能,是一种很有前途的替代品。为了进一步提高催化活性,我们利用Ti3C2TxMXene的静电自吸附能力将Cu-Zn双金属结构锚定在其表面。结果表明,Cu-Zn双金属结构锚定在Ti空位上,并与MXene表面官能团偶联。Zn的加入显著增强了电子向Cu的转移,导致对甲酸的选择性达到87%,并且具有16 h的稳定性。本研究为mxene基双金属催化剂的改性开辟了一条新途径,从而为开发高效的ECO2RR工艺奠定了基础。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cu-Zn bimetal modification of MXene for efficient electrocatalytic carbon dioxide reduction of formic acid

Efficient methods for carbon dioxide reduction reactions (ECO2RR) utilizing electrical energy are of paramount importance, yet the design of catalysts remains a pivotal factor in attaining highly effective ECO2RR processes. To circumvent the reliance on precious metals, it is imperative to attain a high degree of selectivity towards formic acid (HCOOH) through the regulation of Cu metal. Zinc (Zn), being cost-effective and possessing favorable binding energy towards *COOH, emerges as a promising alternative. To further augment the catalytic activity, we employed the electrostatic self-adsorption capability of Ti3C2TxMXene to anchor a Cu-Zn bimetallic structure onto its surface. The results demonstrate that the Cu-Zn bimetallic structure is anchored to the Ti vacancies and coupled with the surface functional groups of MXene. The incorporation of Zn markedly enhances the electron transfer to Cu, leading to a notable 87% selectivity for formic acid and a remarkable stability of 16 h. This study elucidates a novel approach for the modification of MXene-based bimetallic catalysts, thereby establishing a foundation for the development of an efficient ECO2RR process.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Physics A
Applied Physics A 工程技术-材料科学:综合
CiteScore
4.80
自引率
7.40%
发文量
964
审稿时长
38 days
期刊介绍: Applied Physics A publishes experimental and theoretical investigations in applied physics as regular articles, rapid communications, and invited papers. The distinguished 30-member Board of Editors reflects the interdisciplinary approach of the journal and ensures the highest quality of peer review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信