He Zhang, Yi Lou, Shenghui Li, Zihan Fang, Junyi Chen and Chunju Li
{"title":"溶瘤肽与羧基四元酚[3]芳烃络合提高其抗肿瘤作用的研究","authors":"He Zhang, Yi Lou, Shenghui Li, Zihan Fang, Junyi Chen and Chunju Li","doi":"10.1039/D5QM00038F","DOIUrl":null,"url":null,"abstract":"<p >Hepatocellular carcinoma is the most common primary liver cancer with high mortality and poor prognosis. Oncolytic therapy using peptide agents is a promising approach for the above-mentioned malignant tumor; however, their typically low stability often leads to insufficient bioavailability. Herein, we proposed a supramolecular strategy to improve the metabolic stability of the LTX-315 oncolytic peptide <em>via</em> direct complexation with a macrocyclic host. A negatively charged carboxylatoquaterphen[3]arene (CQP3) bearing 12 benzenes on its skeleton was designed and synthesized. CQP3 exhibited strong binding affinity toward LTX-315 with a high association constant of (1.51 ± 0.10) × 10<small><sup>6</sup></small> M<small><sup>−1</sup></small> and excellent recognition selectivity under a complicated physiological environment. This complexation was attractive as traditional macrocycles could only recognize specific amino acid residues of peptide guests owing to their strict cavity limitation. A series of <em>in vitro</em> and <em>in vivo</em> safety tests preliminarily proved that CQP3 possessed good biocompatibility. Complexation with CQP3 enhanced the metabolic stability of LTX-315 and its cytotoxicity at the cellular level after incubation with plasma. <em>In vivo</em> antitumor efficacy studies further demonstrated that LTX-315 co-administrated with equimolar CQP3 was capable of improving the curative outcomes in hepatocellular carcinoma-bearing nude mice.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 10","pages":" 1568-1573"},"PeriodicalIF":6.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complexation of oncolytic peptide with carboxylatoquaterphen[3]arene for ameliorating its antitumor efficacy†\",\"authors\":\"He Zhang, Yi Lou, Shenghui Li, Zihan Fang, Junyi Chen and Chunju Li\",\"doi\":\"10.1039/D5QM00038F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Hepatocellular carcinoma is the most common primary liver cancer with high mortality and poor prognosis. Oncolytic therapy using peptide agents is a promising approach for the above-mentioned malignant tumor; however, their typically low stability often leads to insufficient bioavailability. Herein, we proposed a supramolecular strategy to improve the metabolic stability of the LTX-315 oncolytic peptide <em>via</em> direct complexation with a macrocyclic host. A negatively charged carboxylatoquaterphen[3]arene (CQP3) bearing 12 benzenes on its skeleton was designed and synthesized. CQP3 exhibited strong binding affinity toward LTX-315 with a high association constant of (1.51 ± 0.10) × 10<small><sup>6</sup></small> M<small><sup>−1</sup></small> and excellent recognition selectivity under a complicated physiological environment. This complexation was attractive as traditional macrocycles could only recognize specific amino acid residues of peptide guests owing to their strict cavity limitation. A series of <em>in vitro</em> and <em>in vivo</em> safety tests preliminarily proved that CQP3 possessed good biocompatibility. Complexation with CQP3 enhanced the metabolic stability of LTX-315 and its cytotoxicity at the cellular level after incubation with plasma. <em>In vivo</em> antitumor efficacy studies further demonstrated that LTX-315 co-administrated with equimolar CQP3 was capable of improving the curative outcomes in hepatocellular carcinoma-bearing nude mice.</p>\",\"PeriodicalId\":86,\"journal\":{\"name\":\"Materials Chemistry Frontiers\",\"volume\":\" 10\",\"pages\":\" 1568-1573\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Chemistry Frontiers\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/qm/d5qm00038f\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry Frontiers","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/qm/d5qm00038f","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Complexation of oncolytic peptide with carboxylatoquaterphen[3]arene for ameliorating its antitumor efficacy†
Hepatocellular carcinoma is the most common primary liver cancer with high mortality and poor prognosis. Oncolytic therapy using peptide agents is a promising approach for the above-mentioned malignant tumor; however, their typically low stability often leads to insufficient bioavailability. Herein, we proposed a supramolecular strategy to improve the metabolic stability of the LTX-315 oncolytic peptide via direct complexation with a macrocyclic host. A negatively charged carboxylatoquaterphen[3]arene (CQP3) bearing 12 benzenes on its skeleton was designed and synthesized. CQP3 exhibited strong binding affinity toward LTX-315 with a high association constant of (1.51 ± 0.10) × 106 M−1 and excellent recognition selectivity under a complicated physiological environment. This complexation was attractive as traditional macrocycles could only recognize specific amino acid residues of peptide guests owing to their strict cavity limitation. A series of in vitro and in vivo safety tests preliminarily proved that CQP3 possessed good biocompatibility. Complexation with CQP3 enhanced the metabolic stability of LTX-315 and its cytotoxicity at the cellular level after incubation with plasma. In vivo antitumor efficacy studies further demonstrated that LTX-315 co-administrated with equimolar CQP3 was capable of improving the curative outcomes in hepatocellular carcinoma-bearing nude mice.
期刊介绍:
Materials Chemistry Frontiers focuses on the synthesis and chemistry of exciting new materials, and the development of improved fabrication techniques. Characterisation and fundamental studies that are of broad appeal are also welcome.
This is the ideal home for studies of a significant nature that further the development of organic, inorganic, composite and nano-materials.