PLACE-LIO:以飞机为中心的激光雷达惯性里程计

IF 4.6 2区 计算机科学 Q2 ROBOTICS
Linkun He;Bofeng Li;Guang'e Chen
{"title":"PLACE-LIO:以飞机为中心的激光雷达惯性里程计","authors":"Linkun He;Bofeng Li;Guang'e Chen","doi":"10.1109/LRA.2025.3564790","DOIUrl":null,"url":null,"abstract":"Planes provide effective and reliable constraints for a LiDAR (-Inertial) Odometry method to achieve accurate pose estimation. Typically, one can readily construct local planes by nearest neighbor search or voxelization. Compared to global planes (GPs), these local planes are of lower confidence and always introduce many redundant constraints that may impair the real-time capability. Hence, in this letter, we explicitly extract GPs using a modified uncertainty-guided plane segmentation approach. On this basis, we propose the plane-centric lidar-inertial odometry (PLACE-LIO) method combined with a plane-occupied voxel grid for map representation. Moreover, the proposed LIO system does not solely rely on GPs, which leads to limited applications. We make full use of the scans via a hierarchical data association scheme, and three types of correspondences (i.e., point-to-point, point-to-plane and plane-to-plane) are utilized. We validate the proposed PLACE-LIO on diverse public datasets, and make comparison with other state-of-the-art methods.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 6","pages":"6231-6238"},"PeriodicalIF":4.6000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PLACE-LIO: Plane-Centric LiDAR-Inertial Odometry\",\"authors\":\"Linkun He;Bofeng Li;Guang'e Chen\",\"doi\":\"10.1109/LRA.2025.3564790\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Planes provide effective and reliable constraints for a LiDAR (-Inertial) Odometry method to achieve accurate pose estimation. Typically, one can readily construct local planes by nearest neighbor search or voxelization. Compared to global planes (GPs), these local planes are of lower confidence and always introduce many redundant constraints that may impair the real-time capability. Hence, in this letter, we explicitly extract GPs using a modified uncertainty-guided plane segmentation approach. On this basis, we propose the plane-centric lidar-inertial odometry (PLACE-LIO) method combined with a plane-occupied voxel grid for map representation. Moreover, the proposed LIO system does not solely rely on GPs, which leads to limited applications. We make full use of the scans via a hierarchical data association scheme, and three types of correspondences (i.e., point-to-point, point-to-plane and plane-to-plane) are utilized. We validate the proposed PLACE-LIO on diverse public datasets, and make comparison with other state-of-the-art methods.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"10 6\",\"pages\":\"6231-6238\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10978021/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10978021/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

平面为激光雷达(-惯性)测程方法提供了有效和可靠的约束,以实现准确的姿态估计。通常,我们可以很容易地通过最近邻搜索或体素化来构建局部平面。与全局平面相比,这些局部平面置信度较低,并且总是引入许多冗余约束,可能会影响实时能力。因此,在这封信中,我们使用改进的不确定性引导平面分割方法显式提取GPs。在此基础上,我们提出了以平面为中心的lidar-inertial odometry (PLACE-LIO)方法,并结合平面占用体素网格进行地图表示。此外,所提出的LIO系统并不完全依赖于GPs,这导致了有限的应用。我们通过分层数据关联方案充分利用扫描,并使用了三种类型的对应(即点对点,点对平面和面对平面)。我们在不同的公共数据集上验证了所提出的PLACE-LIO,并与其他最先进的方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PLACE-LIO: Plane-Centric LiDAR-Inertial Odometry
Planes provide effective and reliable constraints for a LiDAR (-Inertial) Odometry method to achieve accurate pose estimation. Typically, one can readily construct local planes by nearest neighbor search or voxelization. Compared to global planes (GPs), these local planes are of lower confidence and always introduce many redundant constraints that may impair the real-time capability. Hence, in this letter, we explicitly extract GPs using a modified uncertainty-guided plane segmentation approach. On this basis, we propose the plane-centric lidar-inertial odometry (PLACE-LIO) method combined with a plane-occupied voxel grid for map representation. Moreover, the proposed LIO system does not solely rely on GPs, which leads to limited applications. We make full use of the scans via a hierarchical data association scheme, and three types of correspondences (i.e., point-to-point, point-to-plane and plane-to-plane) are utilized. We validate the proposed PLACE-LIO on diverse public datasets, and make comparison with other state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信