使用拓扑引导的基于rrt的运动规划

IF 4.6 2区 计算机科学 Q2 ROBOTICS
Diane Uwacu;Ananya Yammanuru;Keerthana Nallamotu;Vasu Chalasani;Marco Morales;Nancy M. Amato
{"title":"使用拓扑引导的基于rrt的运动规划","authors":"Diane Uwacu;Ananya Yammanuru;Keerthana Nallamotu;Vasu Chalasani;Marco Morales;Nancy M. Amato","doi":"10.1109/LRA.2025.3560878","DOIUrl":null,"url":null,"abstract":"We present a hierarchical RRT-based motion planning strategy, Hierarchical Annotated-Skeleton Guided RRT (HAS-RRT), guided by a workspace skeleton, to solve motion planning problems. HAS-RRT provides up to a 91% runtime reduction and builds a tree at least 30% smaller than competitors while still finding competitive-cost paths. This is because our strategy prioritizes paths indicated by the workspace guidance to efficiently find a valid motion plan for the robot. Existing methods either rely too heavily on workspace guidance or have difficulty finding narrow passages. By taking advantage of the assumptions that the workspace skeleton provides, HAS-RRT is able to build a smaller tree and find a path faster than its competitors. Additionally, we show that HAS-RRT is robust to the quality of workspace guidance provided and that, in a worst-case scenario where the workspace skeleton provides no additional insight, our method performs comparably to an unguided method.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 6","pages":"6223-6230"},"PeriodicalIF":4.6000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10964851","citationCount":"0","resultStr":"{\"title\":\"HAS-RRT: RRT-Based Motion Planning Using Topological Guidance\",\"authors\":\"Diane Uwacu;Ananya Yammanuru;Keerthana Nallamotu;Vasu Chalasani;Marco Morales;Nancy M. Amato\",\"doi\":\"10.1109/LRA.2025.3560878\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a hierarchical RRT-based motion planning strategy, Hierarchical Annotated-Skeleton Guided RRT (HAS-RRT), guided by a workspace skeleton, to solve motion planning problems. HAS-RRT provides up to a 91% runtime reduction and builds a tree at least 30% smaller than competitors while still finding competitive-cost paths. This is because our strategy prioritizes paths indicated by the workspace guidance to efficiently find a valid motion plan for the robot. Existing methods either rely too heavily on workspace guidance or have difficulty finding narrow passages. By taking advantage of the assumptions that the workspace skeleton provides, HAS-RRT is able to build a smaller tree and find a path faster than its competitors. Additionally, we show that HAS-RRT is robust to the quality of workspace guidance provided and that, in a worst-case scenario where the workspace skeleton provides no additional insight, our method performs comparably to an unguided method.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"10 6\",\"pages\":\"6223-6230\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10964851\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10964851/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10964851/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种基于分层RRT的运动规划策略——分层注释骨架引导RRT (HAS-RRT),该策略以工作空间骨架为指导来解决运动规划问题。HAS-RRT最多可减少91%的运行时间,构建的树比竞争对手至少小30%,同时仍能找到具有竞争力的成本路径。这是因为我们的策略优先考虑工作空间引导所指示的路径,从而有效地为机器人找到有效的运动计划。现有的方法要么过于依赖工作空间指导,要么难以找到狭窄的通道。通过利用工作空间框架提供的假设,HAS-RRT能够构建更小的树,并比其竞争对手更快地找到路径。另外,我们展示了HAS-RRT对于所提供的工作空间指导的质量是健壮的,并且,在最坏的情况下,当工作空间框架没有提供额外的洞察力时,我们的方法执行起来与无指导的方法相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HAS-RRT: RRT-Based Motion Planning Using Topological Guidance
We present a hierarchical RRT-based motion planning strategy, Hierarchical Annotated-Skeleton Guided RRT (HAS-RRT), guided by a workspace skeleton, to solve motion planning problems. HAS-RRT provides up to a 91% runtime reduction and builds a tree at least 30% smaller than competitors while still finding competitive-cost paths. This is because our strategy prioritizes paths indicated by the workspace guidance to efficiently find a valid motion plan for the robot. Existing methods either rely too heavily on workspace guidance or have difficulty finding narrow passages. By taking advantage of the assumptions that the workspace skeleton provides, HAS-RRT is able to build a smaller tree and find a path faster than its competitors. Additionally, we show that HAS-RRT is robust to the quality of workspace guidance provided and that, in a worst-case scenario where the workspace skeleton provides no additional insight, our method performs comparably to an unguided method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信