两个平方和与其固有子形式的分离

IF 0.6 3区 数学 Q3 MATHEMATICS
Jangwon Ju , Daejun Kim , Kyoungmin Kim , Mingyu Kim , Byeong-Kweon Oh
{"title":"两个平方和与其固有子形式的分离","authors":"Jangwon Ju ,&nbsp;Daejun Kim ,&nbsp;Kyoungmin Kim ,&nbsp;Mingyu Kim ,&nbsp;Byeong-Kweon Oh","doi":"10.1016/j.jnt.2025.02.005","DOIUrl":null,"url":null,"abstract":"<div><div>For a (positive definite and integral) quadratic form <em>f</em>, a quadratic form is said to be <em>an isolation of f from its proper subforms</em> if it represents all proper subforms of <em>f</em>, but not <em>f</em> itself. It was proved that the minimal rank of isolations of the square quadratic form <span><math><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> is three, and there are exactly 15 ternary diagonal isolations of <span><math><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. Recently, it was proved that any quaternary quadratic form cannot be an isolation of the sum of two squares <span><math><msub><mrow><mi>I</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, and there are quinary isolations of <span><math><msub><mrow><mi>I</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. In this article, we prove that there are at most 231 quinary isolations of <span><math><msub><mrow><mi>I</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, which are listed in Table 1. Moreover, we prove that 14 quinary quadratic forms with dagger mark in Table 1 are isolations of <span><math><msub><mrow><mi>I</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"277 ","pages":"Pages 1-18"},"PeriodicalIF":0.6000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Isolations of the sum of two squares from its proper subforms\",\"authors\":\"Jangwon Ju ,&nbsp;Daejun Kim ,&nbsp;Kyoungmin Kim ,&nbsp;Mingyu Kim ,&nbsp;Byeong-Kweon Oh\",\"doi\":\"10.1016/j.jnt.2025.02.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For a (positive definite and integral) quadratic form <em>f</em>, a quadratic form is said to be <em>an isolation of f from its proper subforms</em> if it represents all proper subforms of <em>f</em>, but not <em>f</em> itself. It was proved that the minimal rank of isolations of the square quadratic form <span><math><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> is three, and there are exactly 15 ternary diagonal isolations of <span><math><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. Recently, it was proved that any quaternary quadratic form cannot be an isolation of the sum of two squares <span><math><msub><mrow><mi>I</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, and there are quinary isolations of <span><math><msub><mrow><mi>I</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. In this article, we prove that there are at most 231 quinary isolations of <span><math><msub><mrow><mi>I</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, which are listed in Table 1. Moreover, we prove that 14 quinary quadratic forms with dagger mark in Table 1 are isolations of <span><math><msub><mrow><mi>I</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>.</div></div>\",\"PeriodicalId\":50110,\"journal\":{\"name\":\"Journal of Number Theory\",\"volume\":\"277 \",\"pages\":\"Pages 1-18\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022314X2500109X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X2500109X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于一个(正定积分)二次型f,如果它表示f的所有固有子形式,但不表示f本身,那么二次型就是f与其固有子形式的隔离。证明了x2的平方二次型隔离的最小秩为3,并且x2的三元对角隔离正好有15个。最近证明了任何四元二次型都不能是两个平方和I2=x2+y2的隔离,并且I2存在五元隔离。在本文中,我们证明了I2最多有231个五元分离,如表1所示。此外,我们证明了表1中有匕首标记的14个五次型是I2的隔离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Isolations of the sum of two squares from its proper subforms
For a (positive definite and integral) quadratic form f, a quadratic form is said to be an isolation of f from its proper subforms if it represents all proper subforms of f, but not f itself. It was proved that the minimal rank of isolations of the square quadratic form x2 is three, and there are exactly 15 ternary diagonal isolations of x2. Recently, it was proved that any quaternary quadratic form cannot be an isolation of the sum of two squares I2=x2+y2, and there are quinary isolations of I2. In this article, we prove that there are at most 231 quinary isolations of I2, which are listed in Table 1. Moreover, we prove that 14 quinary quadratic forms with dagger mark in Table 1 are isolations of I2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Number Theory
Journal of Number Theory 数学-数学
CiteScore
1.30
自引率
14.30%
发文量
122
审稿时长
16 weeks
期刊介绍: The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field. The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory. Starting in May 2019, JNT will have a new format with 3 sections: JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access. JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions. Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信