真空辅助高压铸造Mg-5Zn-xCu-0.5Zr合金的组织、力学性能和导热性能研究

IF 6.1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Wenyuan Cong , Feng Wang , Xudong Du , Zhi Wang , Le Zhou , Ziqi Wei , Pingli Mao , Jinwei Li
{"title":"真空辅助高压铸造Mg-5Zn-xCu-0.5Zr合金的组织、力学性能和导热性能研究","authors":"Wenyuan Cong ,&nbsp;Feng Wang ,&nbsp;Xudong Du ,&nbsp;Zhi Wang ,&nbsp;Le Zhou ,&nbsp;Ziqi Wei ,&nbsp;Pingli Mao ,&nbsp;Jinwei Li","doi":"10.1016/j.msea.2025.148478","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the effects of Cu content and heat treatment on the microstructure, mechanical properties, and thermal conductivity (TC) of vacuum-assisted high pressure die cast (HPDC) Mg-5Zn-xCu-0.5Zr alloys (x = 0, 0.5, 1, and 2 wt%). The results indicate that the addition of Cu leads to the formation of the MgZnCu phase and refines the microstructure of the alloy. The strength and elongation of the alloy increase and then decrease with increasing Cu content. Among the alloys, the Mg-5Zn-1Cu-0.5Zr alloy exhibited the highest ultimate tensile strength (231 MPa), yield strength (127 MPa), and elongation (7.48 %) compared to the others. At higher Cu content, the formation of a reticulated MgZnCu phase, which is prone to fracture during tensile testing, results in a deterioration of tensile properties. Heat treatment (400 °C × 16 h + 200 °C × 12 h) transforms the brittle reticulated MgZnCu phase into fine particles, reduces its detrimental effect on the matrix, and promotes the precipitation of solid solution elements within the matrix. As a result, the Mg-5Zn-1Cu-0.5Zr-T6 alloy demonstrates a combination of excellent mechanical properties and TC, with a tensile strength of 254 MPa, elongation of 11.76 %, and TC of 117.64 W/(k·m). The variation in TC and mechanical properties is discussed based on microstructure observations.</div></div>","PeriodicalId":385,"journal":{"name":"Materials Science and Engineering: A","volume":"938 ","pages":"Article 148478"},"PeriodicalIF":6.1000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on microstructure, mechanical properties and thermal conductivity of vacuum-assisted high pressure die casting Mg-5Zn-xCu-0.5Zr alloy\",\"authors\":\"Wenyuan Cong ,&nbsp;Feng Wang ,&nbsp;Xudong Du ,&nbsp;Zhi Wang ,&nbsp;Le Zhou ,&nbsp;Ziqi Wei ,&nbsp;Pingli Mao ,&nbsp;Jinwei Li\",\"doi\":\"10.1016/j.msea.2025.148478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the effects of Cu content and heat treatment on the microstructure, mechanical properties, and thermal conductivity (TC) of vacuum-assisted high pressure die cast (HPDC) Mg-5Zn-xCu-0.5Zr alloys (x = 0, 0.5, 1, and 2 wt%). The results indicate that the addition of Cu leads to the formation of the MgZnCu phase and refines the microstructure of the alloy. The strength and elongation of the alloy increase and then decrease with increasing Cu content. Among the alloys, the Mg-5Zn-1Cu-0.5Zr alloy exhibited the highest ultimate tensile strength (231 MPa), yield strength (127 MPa), and elongation (7.48 %) compared to the others. At higher Cu content, the formation of a reticulated MgZnCu phase, which is prone to fracture during tensile testing, results in a deterioration of tensile properties. Heat treatment (400 °C × 16 h + 200 °C × 12 h) transforms the brittle reticulated MgZnCu phase into fine particles, reduces its detrimental effect on the matrix, and promotes the precipitation of solid solution elements within the matrix. As a result, the Mg-5Zn-1Cu-0.5Zr-T6 alloy demonstrates a combination of excellent mechanical properties and TC, with a tensile strength of 254 MPa, elongation of 11.76 %, and TC of 117.64 W/(k·m). The variation in TC and mechanical properties is discussed based on microstructure observations.</div></div>\",\"PeriodicalId\":385,\"journal\":{\"name\":\"Materials Science and Engineering: A\",\"volume\":\"938 \",\"pages\":\"Article 148478\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science and Engineering: A\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921509325007026\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: A","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921509325007026","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了Cu含量和热处理对真空辅助高压铸造Mg-5Zn-xCu-0.5Zr合金(x = 0、0.5、1和2 wt%)显微组织、力学性能和导热系数(TC)的影响。结果表明:Cu的加入导致MgZnCu相的形成,细化了合金的显微组织;随着Cu含量的增加,合金的强度和伸长率先升高后降低。其中,Mg-5Zn-1Cu-0.5Zr合金的极限抗拉强度为231 MPa,屈服强度为127 MPa,伸长率为7.48%。当Cu含量较高时,形成网状MgZnCu相,在拉伸试验中容易断裂,导致拉伸性能恶化。热处理(400℃× 16 h + 200℃× 12 h)使脆性网状MgZnCu相转变为细小颗粒,降低了其对基体的有害影响,促进了基体内部固溶体元素的析出。结果表明,Mg-5Zn-1Cu-0.5Zr-T6合金具有优异的力学性能和热韧性,抗拉强度为254 MPa,伸长率为11.76%,热韧性为117.64 W/(k·m)。根据显微组织的观察,讨论了热应力和力学性能的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on microstructure, mechanical properties and thermal conductivity of vacuum-assisted high pressure die casting Mg-5Zn-xCu-0.5Zr alloy
This study investigates the effects of Cu content and heat treatment on the microstructure, mechanical properties, and thermal conductivity (TC) of vacuum-assisted high pressure die cast (HPDC) Mg-5Zn-xCu-0.5Zr alloys (x = 0, 0.5, 1, and 2 wt%). The results indicate that the addition of Cu leads to the formation of the MgZnCu phase and refines the microstructure of the alloy. The strength and elongation of the alloy increase and then decrease with increasing Cu content. Among the alloys, the Mg-5Zn-1Cu-0.5Zr alloy exhibited the highest ultimate tensile strength (231 MPa), yield strength (127 MPa), and elongation (7.48 %) compared to the others. At higher Cu content, the formation of a reticulated MgZnCu phase, which is prone to fracture during tensile testing, results in a deterioration of tensile properties. Heat treatment (400 °C × 16 h + 200 °C × 12 h) transforms the brittle reticulated MgZnCu phase into fine particles, reduces its detrimental effect on the matrix, and promotes the precipitation of solid solution elements within the matrix. As a result, the Mg-5Zn-1Cu-0.5Zr-T6 alloy demonstrates a combination of excellent mechanical properties and TC, with a tensile strength of 254 MPa, elongation of 11.76 %, and TC of 117.64 W/(k·m). The variation in TC and mechanical properties is discussed based on microstructure observations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Science and Engineering: A
Materials Science and Engineering: A 工程技术-材料科学:综合
CiteScore
11.50
自引率
15.60%
发文量
1811
审稿时长
31 days
期刊介绍: Materials Science and Engineering A provides an international medium for the publication of theoretical and experimental studies related to the load-bearing capacity of materials as influenced by their basic properties, processing history, microstructure and operating environment. Appropriate submissions to Materials Science and Engineering A should include scientific and/or engineering factors which affect the microstructure - strength relationships of materials and report the changes to mechanical behavior.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信