非凸稀疏惩罚分位数回归的分散平滑ADMM

IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Reza Mirzaeifard;Diyako Ghaderyan;Stefan Werner
{"title":"非凸稀疏惩罚分位数回归的分散平滑ADMM","authors":"Reza Mirzaeifard;Diyako Ghaderyan;Stefan Werner","doi":"10.1109/LSP.2025.3562828","DOIUrl":null,"url":null,"abstract":"In the rapidly evolving internet-of-things (IoT) ecosystem, effective data analysis techniques are crucial for handling distributed data generated by sensors. Addressing the limitations of existing methods, such as the sub-gradient approach, which fails to distinguish between active and non-active coefficients effectively, this paper introduces the decentralized smoothing alternating direction method of multipliers (DSAD) for penalized quantile regression. Our method leverages non-convex sparse penalties like the minimax concave penalty (MCP) and smoothly clipped absolute deviation (SCAD), improving the identification and retention of significant predictors. DSAD incorporates a total variation norm within a smoothing ADMM framework, achieving consensus among distributed nodes and ensuring uniform model performance across disparate data sources. This approach overcomes traditional convergence challenges associated with non-convex penalties in decentralized settings. We present convergence proof and extensive simulation results to validate the effectiveness of the DSAD, demonstrating its superiority in achieving reliable convergence and enhancing estimation accuracy compared with prior methods.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"1915-1919"},"PeriodicalIF":3.2000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decentralized Smoothing ADMM for Quantile Regression With Non-Convex Sparse Penalties\",\"authors\":\"Reza Mirzaeifard;Diyako Ghaderyan;Stefan Werner\",\"doi\":\"10.1109/LSP.2025.3562828\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the rapidly evolving internet-of-things (IoT) ecosystem, effective data analysis techniques are crucial for handling distributed data generated by sensors. Addressing the limitations of existing methods, such as the sub-gradient approach, which fails to distinguish between active and non-active coefficients effectively, this paper introduces the decentralized smoothing alternating direction method of multipliers (DSAD) for penalized quantile regression. Our method leverages non-convex sparse penalties like the minimax concave penalty (MCP) and smoothly clipped absolute deviation (SCAD), improving the identification and retention of significant predictors. DSAD incorporates a total variation norm within a smoothing ADMM framework, achieving consensus among distributed nodes and ensuring uniform model performance across disparate data sources. This approach overcomes traditional convergence challenges associated with non-convex penalties in decentralized settings. We present convergence proof and extensive simulation results to validate the effectiveness of the DSAD, demonstrating its superiority in achieving reliable convergence and enhancing estimation accuracy compared with prior methods.\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":\"32 \",\"pages\":\"1915-1919\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10971234/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10971234/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在快速发展的物联网(IoT)生态系统中,有效的数据分析技术对于处理传感器生成的分布式数据至关重要。针对现有方法的局限性,如子梯度法不能有效区分有源系数和非有源系数,本文引入了用于惩罚分位数回归的分散式平滑乘数交替方向法(DSAD)。我们的方法利用非凸稀疏惩罚,如极小极大凹惩罚(MCP)和平滑裁剪绝对偏差(SCAD),提高了重要预测因子的识别和保留。DSAD在平滑ADMM框架中包含一个总变异规范,在分布式节点之间达成共识,并确保跨不同数据源的统一模型性能。这种方法克服了在分散设置中与非凸惩罚相关的传统收敛挑战。我们给出了收敛证明和广泛的仿真结果来验证DSAD的有效性,证明了与现有方法相比,它在实现可靠收敛和提高估计精度方面的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decentralized Smoothing ADMM for Quantile Regression With Non-Convex Sparse Penalties
In the rapidly evolving internet-of-things (IoT) ecosystem, effective data analysis techniques are crucial for handling distributed data generated by sensors. Addressing the limitations of existing methods, such as the sub-gradient approach, which fails to distinguish between active and non-active coefficients effectively, this paper introduces the decentralized smoothing alternating direction method of multipliers (DSAD) for penalized quantile regression. Our method leverages non-convex sparse penalties like the minimax concave penalty (MCP) and smoothly clipped absolute deviation (SCAD), improving the identification and retention of significant predictors. DSAD incorporates a total variation norm within a smoothing ADMM framework, achieving consensus among distributed nodes and ensuring uniform model performance across disparate data sources. This approach overcomes traditional convergence challenges associated with non-convex penalties in decentralized settings. We present convergence proof and extensive simulation results to validate the effectiveness of the DSAD, demonstrating its superiority in achieving reliable convergence and enhancing estimation accuracy compared with prior methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信