{"title":"从入门到精通:将人工智能整合到混合学习中,以实现公平、包容和易于理解的音乐理论教育","authors":"Chen-Chen Liu , Hai-Jie Wang , Xiao-Qing Gu","doi":"10.1016/j.iheduc.2025.101018","DOIUrl":null,"url":null,"abstract":"<div><div>Although music education is considered a fundamental right for all, disparities in access remain widespread. Learners often face unequal opportunities shaped by their family backgrounds and prior experiences. This study explored the potential of AI integration in blended learning to promote inclusive and accessible music theory education. By utilizing AI-driven feedback in blended learning (AF-BL), students benefit from tailored learning experiences that promote equal opportunities for growth and reflection. A total of 43 students from a public university in China participated in a 4-week music theory course. They were divided into two groups: an experimental group (<em>N</em> = 22) utilizing the AF-BL method, and a control group (<em>N</em> = 21) following the conventional blended learning (C-BL) method. The results demonstrated that the AF-BL method significantly improved learners' music theory learning outcome and perceptions, compared to the C-BL method. Interviews with participants further highlighted the inclusivity and accessibility of the AF-BL approach, noting its ability to cater to diverse learning needs and provide equal learning opportunities for all students. The findings highlight the potential of AI in creating equitable and inclusive educational experiences, suggesting promising directions for future research and practical applications in music theory education.</div></div>","PeriodicalId":48186,"journal":{"name":"Internet and Higher Education","volume":"66 ","pages":"Article 101018"},"PeriodicalIF":6.8000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From access to mastery: Integrating AI in blended learning for equitable, inclusive, and accessible music theory educations\",\"authors\":\"Chen-Chen Liu , Hai-Jie Wang , Xiao-Qing Gu\",\"doi\":\"10.1016/j.iheduc.2025.101018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Although music education is considered a fundamental right for all, disparities in access remain widespread. Learners often face unequal opportunities shaped by their family backgrounds and prior experiences. This study explored the potential of AI integration in blended learning to promote inclusive and accessible music theory education. By utilizing AI-driven feedback in blended learning (AF-BL), students benefit from tailored learning experiences that promote equal opportunities for growth and reflection. A total of 43 students from a public university in China participated in a 4-week music theory course. They were divided into two groups: an experimental group (<em>N</em> = 22) utilizing the AF-BL method, and a control group (<em>N</em> = 21) following the conventional blended learning (C-BL) method. The results demonstrated that the AF-BL method significantly improved learners' music theory learning outcome and perceptions, compared to the C-BL method. Interviews with participants further highlighted the inclusivity and accessibility of the AF-BL approach, noting its ability to cater to diverse learning needs and provide equal learning opportunities for all students. The findings highlight the potential of AI in creating equitable and inclusive educational experiences, suggesting promising directions for future research and practical applications in music theory education.</div></div>\",\"PeriodicalId\":48186,\"journal\":{\"name\":\"Internet and Higher Education\",\"volume\":\"66 \",\"pages\":\"Article 101018\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Internet and Higher Education\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1096751625000272\",\"RegionNum\":1,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet and Higher Education","FirstCategoryId":"95","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1096751625000272","RegionNum":1,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
From access to mastery: Integrating AI in blended learning for equitable, inclusive, and accessible music theory educations
Although music education is considered a fundamental right for all, disparities in access remain widespread. Learners often face unequal opportunities shaped by their family backgrounds and prior experiences. This study explored the potential of AI integration in blended learning to promote inclusive and accessible music theory education. By utilizing AI-driven feedback in blended learning (AF-BL), students benefit from tailored learning experiences that promote equal opportunities for growth and reflection. A total of 43 students from a public university in China participated in a 4-week music theory course. They were divided into two groups: an experimental group (N = 22) utilizing the AF-BL method, and a control group (N = 21) following the conventional blended learning (C-BL) method. The results demonstrated that the AF-BL method significantly improved learners' music theory learning outcome and perceptions, compared to the C-BL method. Interviews with participants further highlighted the inclusivity and accessibility of the AF-BL approach, noting its ability to cater to diverse learning needs and provide equal learning opportunities for all students. The findings highlight the potential of AI in creating equitable and inclusive educational experiences, suggesting promising directions for future research and practical applications in music theory education.
期刊介绍:
The Internet and Higher Education is a quarterly peer-reviewed journal focused on contemporary issues and future trends in online learning, teaching, and administration within post-secondary education. It welcomes contributions from diverse academic disciplines worldwide and provides a platform for theory papers, research studies, critical essays, editorials, reviews, case studies, and social commentary.