点阵玻尔兹曼方法对肺泡管内气道重开的数值模拟

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Qianyu Lv , Bing He , Chunyan Qin , Binghai Wen
{"title":"点阵玻尔兹曼方法对肺泡管内气道重开的数值模拟","authors":"Qianyu Lv ,&nbsp;Bing He ,&nbsp;Chunyan Qin ,&nbsp;Binghai Wen","doi":"10.1016/j.camwa.2025.05.005","DOIUrl":null,"url":null,"abstract":"<div><div>Aerosols, which are generated by the rupture of the liquid plug in the pulmonary respiratory tract, are important carriers of the viruses of infectious respiratory diseases, such as flu, tuberculosis, COVID-19, and Measles. In this study, we investigate liquid plug rupture and aerosol generation in the low respiratory tract with the alveolar structures by the chemical-potential multiphase lattice Boltzmann method. In a single alveolus duct, the opening expedites a unilateral break of the liquid plug due to a portion of the liquid flowing into the alveolus, and a microdroplet is yielded in the rupture. Aerosol would be deflected and reintegrated into the liquid film when the force is not great enough, which generates greater shear stresses to the inner wall where the microdroplet falls. In two alveoli duct, the rupture times of the upper and lower neck of the liquid plug depend on the radius ratio of the upper and lower alveolar. After the rupture of the liquid plug, the movement trajectory of the droplet is influenced by the alveoli structure to move forward or upward deflection. Interestingly, with the increase of radius ratio of the upper and lower alveolar, the mass of the fluid inflow into the alveoli decreases, while the mass of the aerosol generated by the rupture increase. This work contributes to understanding complex flow properties in the pulmonary airways, and the model can be extended to study the transport of liquid plugs and the generation of aerosol particles in more complex respiratory tract structures.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"190 ","pages":"Pages 206-218"},"PeriodicalIF":2.9000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical simulation for pulmonary airway reopening in alveolar duct by lattice Boltzmann method\",\"authors\":\"Qianyu Lv ,&nbsp;Bing He ,&nbsp;Chunyan Qin ,&nbsp;Binghai Wen\",\"doi\":\"10.1016/j.camwa.2025.05.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Aerosols, which are generated by the rupture of the liquid plug in the pulmonary respiratory tract, are important carriers of the viruses of infectious respiratory diseases, such as flu, tuberculosis, COVID-19, and Measles. In this study, we investigate liquid plug rupture and aerosol generation in the low respiratory tract with the alveolar structures by the chemical-potential multiphase lattice Boltzmann method. In a single alveolus duct, the opening expedites a unilateral break of the liquid plug due to a portion of the liquid flowing into the alveolus, and a microdroplet is yielded in the rupture. Aerosol would be deflected and reintegrated into the liquid film when the force is not great enough, which generates greater shear stresses to the inner wall where the microdroplet falls. In two alveoli duct, the rupture times of the upper and lower neck of the liquid plug depend on the radius ratio of the upper and lower alveolar. After the rupture of the liquid plug, the movement trajectory of the droplet is influenced by the alveoli structure to move forward or upward deflection. Interestingly, with the increase of radius ratio of the upper and lower alveolar, the mass of the fluid inflow into the alveoli decreases, while the mass of the aerosol generated by the rupture increase. This work contributes to understanding complex flow properties in the pulmonary airways, and the model can be extended to study the transport of liquid plugs and the generation of aerosol particles in more complex respiratory tract structures.</div></div>\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":\"190 \",\"pages\":\"Pages 206-218\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0898122125001956\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125001956","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

肺部呼吸道液体堵塞破裂产生的气溶胶是流感、结核病、COVID-19、麻疹等呼吸道传染病病毒的重要载体。在这项研究中,我们用化学势多相晶格玻尔兹曼方法研究了具有肺泡结构的下呼吸道中液体堵塞的破裂和气溶胶的产生。在单个肺泡导管中,由于一部分液体流入肺泡,该开口加速液体塞的单侧破裂,并且在破裂中产生微液滴。当作用力不够大时,气溶胶会偏转并重新整合到液膜中,这会对微液滴下落的内壁产生更大的剪切应力。在两个肺泡导管中,液塞上颈和下颈的破裂次数取决于上下肺泡的半径比。液塞破裂后,液滴的运动轨迹受到肺泡结构的影响,向前移动或向上偏转。有趣的是,随着上下肺泡半径比的增大,流入肺泡的流体质量减小,而破裂产生的气溶胶质量增大。这项工作有助于理解肺部气道的复杂流动特性,并且该模型可以扩展到研究更复杂呼吸道结构中液体塞的运输和气溶胶颗粒的产生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical simulation for pulmonary airway reopening in alveolar duct by lattice Boltzmann method
Aerosols, which are generated by the rupture of the liquid plug in the pulmonary respiratory tract, are important carriers of the viruses of infectious respiratory diseases, such as flu, tuberculosis, COVID-19, and Measles. In this study, we investigate liquid plug rupture and aerosol generation in the low respiratory tract with the alveolar structures by the chemical-potential multiphase lattice Boltzmann method. In a single alveolus duct, the opening expedites a unilateral break of the liquid plug due to a portion of the liquid flowing into the alveolus, and a microdroplet is yielded in the rupture. Aerosol would be deflected and reintegrated into the liquid film when the force is not great enough, which generates greater shear stresses to the inner wall where the microdroplet falls. In two alveoli duct, the rupture times of the upper and lower neck of the liquid plug depend on the radius ratio of the upper and lower alveolar. After the rupture of the liquid plug, the movement trajectory of the droplet is influenced by the alveoli structure to move forward or upward deflection. Interestingly, with the increase of radius ratio of the upper and lower alveolar, the mass of the fluid inflow into the alveoli decreases, while the mass of the aerosol generated by the rupture increase. This work contributes to understanding complex flow properties in the pulmonary airways, and the model can be extended to study the transport of liquid plugs and the generation of aerosol particles in more complex respiratory tract structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信