Yang Zhao , Xinyu Chen , Peng Liu , Chris P. Nielsen , Michael B. McElroy
{"title":"中国未来的电动汽车超快充电站:充电模式、电网影响和解决方案,以及升级成本","authors":"Yang Zhao , Xinyu Chen , Peng Liu , Chris P. Nielsen , Michael B. McElroy","doi":"10.1016/j.eng.2025.01.015","DOIUrl":null,"url":null,"abstract":"<div><div>In China, electric vehicle (EV) fast-charging power has quadrupled in the past five years, progressing toward 10-minute ultrafast charging. This rapid increase raises concerns about the impact on the power grid including increased peak power demand and the need for substantial upgrades to power infrastructure. Here, we introduce an integrated model to assess fast and ultrafast charging impacts for representative charging stations in China, combining real-world charging patterns and detailed station optimization models. We find that larger stations with 12 or more chargers experience modest peak power increases of less than 30% when fast-charging power is doubled, primarily because shorter charging sessions are less likely to overlap. For more typical stations (e.g., 8–9 chargers and 120 kW·charger<sup>−1</sup>), upgrading chargers to 350–550 kW while allowing managed dynamic waiting strategies (of ∼1 minute) can reduce overall charging times to ∼9 minutes. At stations, deploying battery storage and/or expanding transformers can help manage future increases in station loads, yet the primary device cost of the former is ∼4 times higher than that of the latter. Our results offer insights for charging infrastructure planning, EV–grid interactions, and associated policymaking.</div></div>","PeriodicalId":11783,"journal":{"name":"Engineering","volume":"48 ","pages":"Pages 309-322"},"PeriodicalIF":10.1000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Future Ultrafast Charging Stations for Electric Vehicles in China: Charging Patterns, Grid Impacts and Solutions, and Upgrade Costs\",\"authors\":\"Yang Zhao , Xinyu Chen , Peng Liu , Chris P. Nielsen , Michael B. McElroy\",\"doi\":\"10.1016/j.eng.2025.01.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In China, electric vehicle (EV) fast-charging power has quadrupled in the past five years, progressing toward 10-minute ultrafast charging. This rapid increase raises concerns about the impact on the power grid including increased peak power demand and the need for substantial upgrades to power infrastructure. Here, we introduce an integrated model to assess fast and ultrafast charging impacts for representative charging stations in China, combining real-world charging patterns and detailed station optimization models. We find that larger stations with 12 or more chargers experience modest peak power increases of less than 30% when fast-charging power is doubled, primarily because shorter charging sessions are less likely to overlap. For more typical stations (e.g., 8–9 chargers and 120 kW·charger<sup>−1</sup>), upgrading chargers to 350–550 kW while allowing managed dynamic waiting strategies (of ∼1 minute) can reduce overall charging times to ∼9 minutes. At stations, deploying battery storage and/or expanding transformers can help manage future increases in station loads, yet the primary device cost of the former is ∼4 times higher than that of the latter. Our results offer insights for charging infrastructure planning, EV–grid interactions, and associated policymaking.</div></div>\",\"PeriodicalId\":11783,\"journal\":{\"name\":\"Engineering\",\"volume\":\"48 \",\"pages\":\"Pages 309-322\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S209580992500102X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S209580992500102X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Future Ultrafast Charging Stations for Electric Vehicles in China: Charging Patterns, Grid Impacts and Solutions, and Upgrade Costs
In China, electric vehicle (EV) fast-charging power has quadrupled in the past five years, progressing toward 10-minute ultrafast charging. This rapid increase raises concerns about the impact on the power grid including increased peak power demand and the need for substantial upgrades to power infrastructure. Here, we introduce an integrated model to assess fast and ultrafast charging impacts for representative charging stations in China, combining real-world charging patterns and detailed station optimization models. We find that larger stations with 12 or more chargers experience modest peak power increases of less than 30% when fast-charging power is doubled, primarily because shorter charging sessions are less likely to overlap. For more typical stations (e.g., 8–9 chargers and 120 kW·charger−1), upgrading chargers to 350–550 kW while allowing managed dynamic waiting strategies (of ∼1 minute) can reduce overall charging times to ∼9 minutes. At stations, deploying battery storage and/or expanding transformers can help manage future increases in station loads, yet the primary device cost of the former is ∼4 times higher than that of the latter. Our results offer insights for charging infrastructure planning, EV–grid interactions, and associated policymaking.
期刊介绍:
Engineering, an international open-access journal initiated by the Chinese Academy of Engineering (CAE) in 2015, serves as a distinguished platform for disseminating cutting-edge advancements in engineering R&D, sharing major research outputs, and highlighting key achievements worldwide. The journal's objectives encompass reporting progress in engineering science, fostering discussions on hot topics, addressing areas of interest, challenges, and prospects in engineering development, while considering human and environmental well-being and ethics in engineering. It aims to inspire breakthroughs and innovations with profound economic and social significance, propelling them to advanced international standards and transforming them into a new productive force. Ultimately, this endeavor seeks to bring about positive changes globally, benefit humanity, and shape a new future.