Lin Du , Yao-Yu Xiao , Zhi-Chao Jiang , Hongbo Zeng , Huazhou Li
{"title":"高温稳定分散颗粒凝胶在碳捕获,利用和储存(CCUS)应用中增强剖面控制","authors":"Lin Du , Yao-Yu Xiao , Zhi-Chao Jiang , Hongbo Zeng , Huazhou Li","doi":"10.1016/j.eng.2025.04.002","DOIUrl":null,"url":null,"abstract":"<div><div>CO<sub>2</sub>-responsive gels, which swell upon contact with CO<sub>2</sub>, are widely used for profile control to plug high-permeability gas flow channels in carbon capture, utilization, and storage (CCUS) applications in oil reservoirs. However, the use of these gels in high-temperature CCUS applications is limited due to their reversible swelling behavior at elevated temperatures. In this study, a novel dispersed particle gel (DPG) suspension is developed for high-temperature profile control in CCUS applications. First, we synthesize a double-network hydrogel consisting of a crosslinked polyacrylamide (PAAm) network and a crosslinked sodium alginate (SA) network. The hydrogel is then sheared in water to form a pre-prepared DPG suspension. To enhance its performance, the gel particles are modified by introducing potassium methylsilanetriolate (PMS) upon CO<sub>2</sub> exposure. Comparing the particle size distributions of the modified and pre-prepared DPG suspension reveals a significant swelling of gel particles, over twice their original size. Moreover, subjecting the new DPG suspension to a 100 °C environment for 24 h demonstrates that its gel particle sizes do not decrease, confirming irreversible swelling, which is a significant advantage over the traditional CO<sub>2</sub>-responsive gels. Thermogravimetric analysis further indicates improved thermal stability compared to the pre-prepared DPG particles. Core flooding experiments show that the new DPG suspension achieves a high plugging efficiency of 95.3% in plugging an ultra-high permeability sandpack, whereas the pre-prepared DPG suspension achieves only 82.8%. With its high swelling ratio, irreversible swelling at high temperatures, enhanced thermal stability, and superior plugging performance, the newly developed DPG suspension in this work presents a highly promising solution for profile control in high-temperature CCUS applications.</div></div>","PeriodicalId":11783,"journal":{"name":"Engineering","volume":"48 ","pages":"Pages 128-140"},"PeriodicalIF":10.1000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Temperature Stable Dispersed Particle Gel for Enhanced Profile Control in Carbon Capture, Utilization, and Storage (CCUS) Applications\",\"authors\":\"Lin Du , Yao-Yu Xiao , Zhi-Chao Jiang , Hongbo Zeng , Huazhou Li\",\"doi\":\"10.1016/j.eng.2025.04.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>CO<sub>2</sub>-responsive gels, which swell upon contact with CO<sub>2</sub>, are widely used for profile control to plug high-permeability gas flow channels in carbon capture, utilization, and storage (CCUS) applications in oil reservoirs. However, the use of these gels in high-temperature CCUS applications is limited due to their reversible swelling behavior at elevated temperatures. In this study, a novel dispersed particle gel (DPG) suspension is developed for high-temperature profile control in CCUS applications. First, we synthesize a double-network hydrogel consisting of a crosslinked polyacrylamide (PAAm) network and a crosslinked sodium alginate (SA) network. The hydrogel is then sheared in water to form a pre-prepared DPG suspension. To enhance its performance, the gel particles are modified by introducing potassium methylsilanetriolate (PMS) upon CO<sub>2</sub> exposure. Comparing the particle size distributions of the modified and pre-prepared DPG suspension reveals a significant swelling of gel particles, over twice their original size. Moreover, subjecting the new DPG suspension to a 100 °C environment for 24 h demonstrates that its gel particle sizes do not decrease, confirming irreversible swelling, which is a significant advantage over the traditional CO<sub>2</sub>-responsive gels. Thermogravimetric analysis further indicates improved thermal stability compared to the pre-prepared DPG particles. Core flooding experiments show that the new DPG suspension achieves a high plugging efficiency of 95.3% in plugging an ultra-high permeability sandpack, whereas the pre-prepared DPG suspension achieves only 82.8%. With its high swelling ratio, irreversible swelling at high temperatures, enhanced thermal stability, and superior plugging performance, the newly developed DPG suspension in this work presents a highly promising solution for profile control in high-temperature CCUS applications.</div></div>\",\"PeriodicalId\":11783,\"journal\":{\"name\":\"Engineering\",\"volume\":\"48 \",\"pages\":\"Pages 128-140\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095809925001936\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095809925001936","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
High-Temperature Stable Dispersed Particle Gel for Enhanced Profile Control in Carbon Capture, Utilization, and Storage (CCUS) Applications
CO2-responsive gels, which swell upon contact with CO2, are widely used for profile control to plug high-permeability gas flow channels in carbon capture, utilization, and storage (CCUS) applications in oil reservoirs. However, the use of these gels in high-temperature CCUS applications is limited due to their reversible swelling behavior at elevated temperatures. In this study, a novel dispersed particle gel (DPG) suspension is developed for high-temperature profile control in CCUS applications. First, we synthesize a double-network hydrogel consisting of a crosslinked polyacrylamide (PAAm) network and a crosslinked sodium alginate (SA) network. The hydrogel is then sheared in water to form a pre-prepared DPG suspension. To enhance its performance, the gel particles are modified by introducing potassium methylsilanetriolate (PMS) upon CO2 exposure. Comparing the particle size distributions of the modified and pre-prepared DPG suspension reveals a significant swelling of gel particles, over twice their original size. Moreover, subjecting the new DPG suspension to a 100 °C environment for 24 h demonstrates that its gel particle sizes do not decrease, confirming irreversible swelling, which is a significant advantage over the traditional CO2-responsive gels. Thermogravimetric analysis further indicates improved thermal stability compared to the pre-prepared DPG particles. Core flooding experiments show that the new DPG suspension achieves a high plugging efficiency of 95.3% in plugging an ultra-high permeability sandpack, whereas the pre-prepared DPG suspension achieves only 82.8%. With its high swelling ratio, irreversible swelling at high temperatures, enhanced thermal stability, and superior plugging performance, the newly developed DPG suspension in this work presents a highly promising solution for profile control in high-temperature CCUS applications.
期刊介绍:
Engineering, an international open-access journal initiated by the Chinese Academy of Engineering (CAE) in 2015, serves as a distinguished platform for disseminating cutting-edge advancements in engineering R&D, sharing major research outputs, and highlighting key achievements worldwide. The journal's objectives encompass reporting progress in engineering science, fostering discussions on hot topics, addressing areas of interest, challenges, and prospects in engineering development, while considering human and environmental well-being and ethics in engineering. It aims to inspire breakthroughs and innovations with profound economic and social significance, propelling them to advanced international standards and transforming them into a new productive force. Ultimately, this endeavor seeks to bring about positive changes globally, benefit humanity, and shape a new future.