{"title":"具有一类大初始数据的三维不可压缩MHD系统的全局适定性","authors":"Zhibin Wang","doi":"10.1016/j.jmaa.2025.129645","DOIUrl":null,"url":null,"abstract":"<div><div>We study the global well-posedness for the 3D Magnetohydrodynamics (MHD) system with a class of large initial data. This type of data varies slowly in the vertical direction and its norm blows up in the largest critical space <span><math><msubsup><mrow><mover><mrow><mi>B</mi></mrow><mrow><mo>˙</mo></mrow></mover></mrow><mrow><mo>∞</mo><mo>,</mo><mo>∞</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msubsup></math></span> at a rate of <span><math><msup><mrow><mi>ε</mi></mrow><mrow><mi>δ</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span> for <span><math><mn>0</mn><mo>≤</mo><mi>δ</mi><mo><</mo><mn>1</mn></math></span> as <em>ε</em> tends to zero. With this type of data, we prove the system generates global solutions in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> when <span><math><mn>0</mn><mo><</mo><mi>δ</mi><mo><</mo><mn>1</mn></math></span>. When <span><math><mi>δ</mi><mo>=</mo><mn>0</mn></math></span>, we prove the system is globally well-posed in <span><math><msup><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>×</mo><mi>R</mi></math></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"550 2","pages":"Article 129645"},"PeriodicalIF":1.2000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global well-posedness for the 3D incompressible MHD system with a class of large initial data\",\"authors\":\"Zhibin Wang\",\"doi\":\"10.1016/j.jmaa.2025.129645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study the global well-posedness for the 3D Magnetohydrodynamics (MHD) system with a class of large initial data. This type of data varies slowly in the vertical direction and its norm blows up in the largest critical space <span><math><msubsup><mrow><mover><mrow><mi>B</mi></mrow><mrow><mo>˙</mo></mrow></mover></mrow><mrow><mo>∞</mo><mo>,</mo><mo>∞</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msubsup></math></span> at a rate of <span><math><msup><mrow><mi>ε</mi></mrow><mrow><mi>δ</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span> for <span><math><mn>0</mn><mo>≤</mo><mi>δ</mi><mo><</mo><mn>1</mn></math></span> as <em>ε</em> tends to zero. With this type of data, we prove the system generates global solutions in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> when <span><math><mn>0</mn><mo><</mo><mi>δ</mi><mo><</mo><mn>1</mn></math></span>. When <span><math><mi>δ</mi><mo>=</mo><mn>0</mn></math></span>, we prove the system is globally well-posed in <span><math><msup><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>×</mo><mi>R</mi></math></span>.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"550 2\",\"pages\":\"Article 129645\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25004263\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25004263","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Global well-posedness for the 3D incompressible MHD system with a class of large initial data
We study the global well-posedness for the 3D Magnetohydrodynamics (MHD) system with a class of large initial data. This type of data varies slowly in the vertical direction and its norm blows up in the largest critical space at a rate of for as ε tends to zero. With this type of data, we prove the system generates global solutions in when . When , we prove the system is globally well-posed in .
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.