具有一类大初始数据的三维不可压缩MHD系统的全局适定性

IF 1.2 3区 数学 Q1 MATHEMATICS
Zhibin Wang
{"title":"具有一类大初始数据的三维不可压缩MHD系统的全局适定性","authors":"Zhibin Wang","doi":"10.1016/j.jmaa.2025.129645","DOIUrl":null,"url":null,"abstract":"<div><div>We study the global well-posedness for the 3D Magnetohydrodynamics (MHD) system with a class of large initial data. This type of data varies slowly in the vertical direction and its norm blows up in the largest critical space <span><math><msubsup><mrow><mover><mrow><mi>B</mi></mrow><mrow><mo>˙</mo></mrow></mover></mrow><mrow><mo>∞</mo><mo>,</mo><mo>∞</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msubsup></math></span> at a rate of <span><math><msup><mrow><mi>ε</mi></mrow><mrow><mi>δ</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span> for <span><math><mn>0</mn><mo>≤</mo><mi>δ</mi><mo>&lt;</mo><mn>1</mn></math></span> as <em>ε</em> tends to zero. With this type of data, we prove the system generates global solutions in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> when <span><math><mn>0</mn><mo>&lt;</mo><mi>δ</mi><mo>&lt;</mo><mn>1</mn></math></span>. When <span><math><mi>δ</mi><mo>=</mo><mn>0</mn></math></span>, we prove the system is globally well-posed in <span><math><msup><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>×</mo><mi>R</mi></math></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"550 2","pages":"Article 129645"},"PeriodicalIF":1.2000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global well-posedness for the 3D incompressible MHD system with a class of large initial data\",\"authors\":\"Zhibin Wang\",\"doi\":\"10.1016/j.jmaa.2025.129645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study the global well-posedness for the 3D Magnetohydrodynamics (MHD) system with a class of large initial data. This type of data varies slowly in the vertical direction and its norm blows up in the largest critical space <span><math><msubsup><mrow><mover><mrow><mi>B</mi></mrow><mrow><mo>˙</mo></mrow></mover></mrow><mrow><mo>∞</mo><mo>,</mo><mo>∞</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msubsup></math></span> at a rate of <span><math><msup><mrow><mi>ε</mi></mrow><mrow><mi>δ</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span> for <span><math><mn>0</mn><mo>≤</mo><mi>δ</mi><mo>&lt;</mo><mn>1</mn></math></span> as <em>ε</em> tends to zero. With this type of data, we prove the system generates global solutions in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> when <span><math><mn>0</mn><mo>&lt;</mo><mi>δ</mi><mo>&lt;</mo><mn>1</mn></math></span>. When <span><math><mi>δ</mi><mo>=</mo><mn>0</mn></math></span>, we prove the system is globally well-posed in <span><math><msup><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>×</mo><mi>R</mi></math></span>.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"550 2\",\"pages\":\"Article 129645\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25004263\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25004263","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了具有一类大初始数据的三维磁流体动力学系统的全局适定性。这种类型的数据在垂直方向上变化缓慢,其范数在最大临界空间B˙∞,∞−1中以εδ−1的速率爆炸,当ε趋于零时,0≤δ<1。利用这种类型的数据,我们证明了系统在0<;δ<;1时在R3中生成全局解。当δ=0时,我们在T2×R中证明了系统是全局良定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global well-posedness for the 3D incompressible MHD system with a class of large initial data
We study the global well-posedness for the 3D Magnetohydrodynamics (MHD) system with a class of large initial data. This type of data varies slowly in the vertical direction and its norm blows up in the largest critical space B˙,1 at a rate of εδ1 for 0δ<1 as ε tends to zero. With this type of data, we prove the system generates global solutions in R3 when 0<δ<1. When δ=0, we prove the system is globally well-posed in T2×R.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信