{"title":"零质量卷积非线性Schrödinger-Poisson方程解的存在性","authors":"Xueying Tang, Jiuyang Wei","doi":"10.1016/j.jmaa.2025.129632","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, we study the Schrödinger-Poisson system with zero mass and a convolution nonlinearity:<span><span><span><math><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mrow><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn><mi>π</mi><mo>|</mo><mi>x</mi><mo>|</mo></mrow></mfrac><mo>⁎</mo><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mi>u</mi><mo>=</mo><mi>μ</mi><mo>(</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>⁎</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msup><mo>)</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>,</mo><mspace></mspace><mspace></mspace><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>,</mo></math></span></span></span> where <span><math><mi>p</mi><mo>∈</mo><mrow><mo>(</mo><mfrac><mrow><mn>17</mn><mo>(</mo><mn>3</mn><mo>+</mo><mi>α</mi><mo>)</mo></mrow><mrow><mn>48</mn></mrow></mfrac><mo>,</mo><mn>3</mn><mo>+</mo><mi>α</mi><mo>)</mo></mrow></math></span> and <span><math><mi>μ</mi><mo>></mo><mn>0</mn></math></span>. We prove that the aforementioned system admits a ground state solution when <span><math><mi>p</mi><mo>∈</mo><mrow><mo>(</mo><mfrac><mrow><mn>17</mn><mo>(</mo><mn>3</mn><mo>+</mo><mi>α</mi><mo>)</mo></mrow><mrow><mn>48</mn></mrow></mfrac><mo>,</mo><mfrac><mrow><mn>6</mn><mo>+</mo><mi>α</mi></mrow><mrow><mn>4</mn></mrow></mfrac><mo>)</mo></mrow></math></span> or <span><math><mi>p</mi><mo>∈</mo><mrow><mo>(</mo><mfrac><mrow><mn>3</mn><mo>+</mo><mi>α</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mn>3</mn><mo>+</mo><mi>α</mi><mo>)</mo></mrow></math></span>; and a radially symmetric ground state solution when <span><math><mi>p</mi><mo>∈</mo><mrow><mo>(</mo><mfrac><mrow><mn>6</mn><mo>+</mo><mi>α</mi></mrow><mrow><mn>4</mn></mrow></mfrac><mo>,</mo><mfrac><mrow><mn>3</mn><mo>+</mo><mi>α</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>]</mo></mrow></math></span>. Specifically, when <span><math><mi>p</mi><mo>=</mo><mfrac><mrow><mn>6</mn><mo>+</mo><mi>α</mi></mrow><mrow><mn>4</mn></mrow></mfrac></math></span>, we demonstrate that the system only admits trivial solution for <span><math><mn>0</mn><mo><</mo><mi>μ</mi><mo><</mo><msub><mrow><mi>μ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, but admits a positive solution if <em>μ</em> takes some particular value, where <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is a specific value dependent on <em>α</em>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"550 2","pages":"Article 129632"},"PeriodicalIF":1.2000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The existence of solutions for Schrödinger-Poisson equation with zero mass and a convolution nonlinearity\",\"authors\":\"Xueying Tang, Jiuyang Wei\",\"doi\":\"10.1016/j.jmaa.2025.129632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this article, we study the Schrödinger-Poisson system with zero mass and a convolution nonlinearity:<span><span><span><math><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mrow><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn><mi>π</mi><mo>|</mo><mi>x</mi><mo>|</mo></mrow></mfrac><mo>⁎</mo><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mi>u</mi><mo>=</mo><mi>μ</mi><mo>(</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>⁎</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msup><mo>)</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>,</mo><mspace></mspace><mspace></mspace><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>,</mo></math></span></span></span> where <span><math><mi>p</mi><mo>∈</mo><mrow><mo>(</mo><mfrac><mrow><mn>17</mn><mo>(</mo><mn>3</mn><mo>+</mo><mi>α</mi><mo>)</mo></mrow><mrow><mn>48</mn></mrow></mfrac><mo>,</mo><mn>3</mn><mo>+</mo><mi>α</mi><mo>)</mo></mrow></math></span> and <span><math><mi>μ</mi><mo>></mo><mn>0</mn></math></span>. We prove that the aforementioned system admits a ground state solution when <span><math><mi>p</mi><mo>∈</mo><mrow><mo>(</mo><mfrac><mrow><mn>17</mn><mo>(</mo><mn>3</mn><mo>+</mo><mi>α</mi><mo>)</mo></mrow><mrow><mn>48</mn></mrow></mfrac><mo>,</mo><mfrac><mrow><mn>6</mn><mo>+</mo><mi>α</mi></mrow><mrow><mn>4</mn></mrow></mfrac><mo>)</mo></mrow></math></span> or <span><math><mi>p</mi><mo>∈</mo><mrow><mo>(</mo><mfrac><mrow><mn>3</mn><mo>+</mo><mi>α</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mn>3</mn><mo>+</mo><mi>α</mi><mo>)</mo></mrow></math></span>; and a radially symmetric ground state solution when <span><math><mi>p</mi><mo>∈</mo><mrow><mo>(</mo><mfrac><mrow><mn>6</mn><mo>+</mo><mi>α</mi></mrow><mrow><mn>4</mn></mrow></mfrac><mo>,</mo><mfrac><mrow><mn>3</mn><mo>+</mo><mi>α</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>]</mo></mrow></math></span>. Specifically, when <span><math><mi>p</mi><mo>=</mo><mfrac><mrow><mn>6</mn><mo>+</mo><mi>α</mi></mrow><mrow><mn>4</mn></mrow></mfrac></math></span>, we demonstrate that the system only admits trivial solution for <span><math><mn>0</mn><mo><</mo><mi>μ</mi><mo><</mo><msub><mrow><mi>μ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, but admits a positive solution if <em>μ</em> takes some particular value, where <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is a specific value dependent on <em>α</em>.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"550 2\",\"pages\":\"Article 129632\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25004135\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25004135","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
The existence of solutions for Schrödinger-Poisson equation with zero mass and a convolution nonlinearity
In this article, we study the Schrödinger-Poisson system with zero mass and a convolution nonlinearity: where and . We prove that the aforementioned system admits a ground state solution when or ; and a radially symmetric ground state solution when . Specifically, when , we demonstrate that the system only admits trivial solution for , but admits a positive solution if μ takes some particular value, where is a specific value dependent on α.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.