{"title":"Lewis/Brönsted酸位和床型对葡萄糖脱水的综合影响","authors":"Xinyi Zhou, Xiangqian Wei, Haoyang Wei, Gehao Chen, Qi Zhang, Lungang Chen, Jianguo Liu, Xinghua Zhang, Longlong Ma","doi":"10.1016/j.energy.2025.136493","DOIUrl":null,"url":null,"abstract":"<div><div>Acidic catalysts with multiple active centers have attracted considerable interest in bioenergy engineering due to their superior catalytic performance enabled by synergistic effects between different active species. The conversion of glucose to 5-hydroxymethylfurfural (HMF) using bifunctional catalysts combining Lewis acid (L acid) and Brönsted acid (B acid) represents a crucial pathway for biofuel production. However, the reaction performance depends on the matching relationships between acid ratio, reaction steps, and transport processes. Here, this dependency was systematically investigated using a mesoscale numerical model based on the lattice Boltzmann method (validated against experimental results) coupled with an acidic sites tunable catalyst model. An empirical relationship between reaction performance and acid ratio was established through regulation of L/B acid distribution in porous catalyst models, revealing an optimal L/B acid ratio of 0.6. By elucidating process coupling mechanisms affecting overall reaction rate under different porosity and bed height conditions, the distinct reactive transport characteristics in different bed regions were identified. Accordingly, an integrated optimization strategy combining acid ratio and bed geometric properties was proposed. The findings emphasize the critical importance of matching catalyst (bed) acid properties, geometry and reactive-transport processes for enhancing overall performance in biomass conversion.</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"328 ","pages":"Article 136493"},"PeriodicalIF":9.0000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comprehensive impact of Lewis/Brönsted acid sites and bed geometry on glucose dehydration\",\"authors\":\"Xinyi Zhou, Xiangqian Wei, Haoyang Wei, Gehao Chen, Qi Zhang, Lungang Chen, Jianguo Liu, Xinghua Zhang, Longlong Ma\",\"doi\":\"10.1016/j.energy.2025.136493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Acidic catalysts with multiple active centers have attracted considerable interest in bioenergy engineering due to their superior catalytic performance enabled by synergistic effects between different active species. The conversion of glucose to 5-hydroxymethylfurfural (HMF) using bifunctional catalysts combining Lewis acid (L acid) and Brönsted acid (B acid) represents a crucial pathway for biofuel production. However, the reaction performance depends on the matching relationships between acid ratio, reaction steps, and transport processes. Here, this dependency was systematically investigated using a mesoscale numerical model based on the lattice Boltzmann method (validated against experimental results) coupled with an acidic sites tunable catalyst model. An empirical relationship between reaction performance and acid ratio was established through regulation of L/B acid distribution in porous catalyst models, revealing an optimal L/B acid ratio of 0.6. By elucidating process coupling mechanisms affecting overall reaction rate under different porosity and bed height conditions, the distinct reactive transport characteristics in different bed regions were identified. Accordingly, an integrated optimization strategy combining acid ratio and bed geometric properties was proposed. The findings emphasize the critical importance of matching catalyst (bed) acid properties, geometry and reactive-transport processes for enhancing overall performance in biomass conversion.</div></div>\",\"PeriodicalId\":11647,\"journal\":{\"name\":\"Energy\",\"volume\":\"328 \",\"pages\":\"Article 136493\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0360544225021358\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360544225021358","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Comprehensive impact of Lewis/Brönsted acid sites and bed geometry on glucose dehydration
Acidic catalysts with multiple active centers have attracted considerable interest in bioenergy engineering due to their superior catalytic performance enabled by synergistic effects between different active species. The conversion of glucose to 5-hydroxymethylfurfural (HMF) using bifunctional catalysts combining Lewis acid (L acid) and Brönsted acid (B acid) represents a crucial pathway for biofuel production. However, the reaction performance depends on the matching relationships between acid ratio, reaction steps, and transport processes. Here, this dependency was systematically investigated using a mesoscale numerical model based on the lattice Boltzmann method (validated against experimental results) coupled with an acidic sites tunable catalyst model. An empirical relationship between reaction performance and acid ratio was established through regulation of L/B acid distribution in porous catalyst models, revealing an optimal L/B acid ratio of 0.6. By elucidating process coupling mechanisms affecting overall reaction rate under different porosity and bed height conditions, the distinct reactive transport characteristics in different bed regions were identified. Accordingly, an integrated optimization strategy combining acid ratio and bed geometric properties was proposed. The findings emphasize the critical importance of matching catalyst (bed) acid properties, geometry and reactive-transport processes for enhancing overall performance in biomass conversion.
期刊介绍:
Energy is a multidisciplinary, international journal that publishes research and analysis in the field of energy engineering. Our aim is to become a leading peer-reviewed platform and a trusted source of information for energy-related topics.
The journal covers a range of areas including mechanical engineering, thermal sciences, and energy analysis. We are particularly interested in research on energy modelling, prediction, integrated energy systems, planning, and management.
Additionally, we welcome papers on energy conservation, efficiency, biomass and bioenergy, renewable energy, electricity supply and demand, energy storage, buildings, and economic and policy issues. These topics should align with our broader multidisciplinary focus.