Hamdy Abdelkader , Adel Al-Fatease , Ali H. Alamri , Mai E. Shoman , Hend Mohamed Abdel-Bar , Zeinab Fathalla
{"title":"体外表征、环糊精配合物的细胞毒性和细胞摄取以及与雷洛昔芬的功能赋形剂(壬二酸、酒石酸和精氨酸)的离子配对/盐形成","authors":"Hamdy Abdelkader , Adel Al-Fatease , Ali H. Alamri , Mai E. Shoman , Hend Mohamed Abdel-Bar , Zeinab Fathalla","doi":"10.1016/j.ijpx.2025.100336","DOIUrl":null,"url":null,"abstract":"<div><div>With advancements in drug repurposing, the search for effective and less harmful anticancer agents remains a critical endeavor. Raloxifene, although not a typical anticancer drug, holds promise in this context. However, its poor solubility poses a significant challenge to its therapeutic potential and formulation efficiency. Functional excipients such as cyclodextrins (e.g., β-cyclodextrin, hydroxy propyl β-cyclodextrin, and Captisol) and pH-modifying excipients (e.g., tartaric acid, azelaic acid, and arginine) were investigated to enhance solubility, dissolution, cytotoxicity and cellular uptakes employing Caco-2 cell lines through binary solid dispersions. In silico studies suggested the potential for salt formation with raloxifene-azelaic acid and raloxifene-tartaric acid, as well as inclusion complexes with cyclodextrins. Experimental results showed that pH-modifying excipients, particularly tartaric and azelaic acids, significantly improved solubility (up to an 800-fold increase), outperforming cyclodextrins (8-fold increase) compared to the untreated drug. Cytotoxicity studies on the human breast cancer (Michigan cancer foundation, MCF-7) cells revealed that raloxifene-tartaric acid significantly enhanced cell killing, achieving efficacy comparable to the standard anticancer drug Taxol. Additionally, both fluorescence-labeled raloxifene: hydroxy propyl β-cyclodextrin coprecipitated mixtures (Coppt) and raloxifene: tartaric acid Coppt exhibited concentration- and time-dependent cellular uptake, with mean fluorescence intensity increasing significantly at 24 h, indicating rapid internalization and sustained intracellular retention, especially at higher concentrations. More interestingly, the superior cellular uptake was in favor of the latter, indicating the pH-modifying excipient tartaric acid, and these findings correlated well with solubility and dissolution studies.</div></div>","PeriodicalId":14280,"journal":{"name":"International Journal of Pharmaceutics: X","volume":"9 ","pages":"Article 100336"},"PeriodicalIF":5.2000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formulation, in silico, in vitro characterization, cytotoxicity and cellular uptake of cyclodextrin complexes and ion pairing/salt formation with functional excipients (azelaic acid, tartaric acid, and arginine) with raloxifene\",\"authors\":\"Hamdy Abdelkader , Adel Al-Fatease , Ali H. Alamri , Mai E. Shoman , Hend Mohamed Abdel-Bar , Zeinab Fathalla\",\"doi\":\"10.1016/j.ijpx.2025.100336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>With advancements in drug repurposing, the search for effective and less harmful anticancer agents remains a critical endeavor. Raloxifene, although not a typical anticancer drug, holds promise in this context. However, its poor solubility poses a significant challenge to its therapeutic potential and formulation efficiency. Functional excipients such as cyclodextrins (e.g., β-cyclodextrin, hydroxy propyl β-cyclodextrin, and Captisol) and pH-modifying excipients (e.g., tartaric acid, azelaic acid, and arginine) were investigated to enhance solubility, dissolution, cytotoxicity and cellular uptakes employing Caco-2 cell lines through binary solid dispersions. In silico studies suggested the potential for salt formation with raloxifene-azelaic acid and raloxifene-tartaric acid, as well as inclusion complexes with cyclodextrins. Experimental results showed that pH-modifying excipients, particularly tartaric and azelaic acids, significantly improved solubility (up to an 800-fold increase), outperforming cyclodextrins (8-fold increase) compared to the untreated drug. Cytotoxicity studies on the human breast cancer (Michigan cancer foundation, MCF-7) cells revealed that raloxifene-tartaric acid significantly enhanced cell killing, achieving efficacy comparable to the standard anticancer drug Taxol. Additionally, both fluorescence-labeled raloxifene: hydroxy propyl β-cyclodextrin coprecipitated mixtures (Coppt) and raloxifene: tartaric acid Coppt exhibited concentration- and time-dependent cellular uptake, with mean fluorescence intensity increasing significantly at 24 h, indicating rapid internalization and sustained intracellular retention, especially at higher concentrations. More interestingly, the superior cellular uptake was in favor of the latter, indicating the pH-modifying excipient tartaric acid, and these findings correlated well with solubility and dissolution studies.</div></div>\",\"PeriodicalId\":14280,\"journal\":{\"name\":\"International Journal of Pharmaceutics: X\",\"volume\":\"9 \",\"pages\":\"Article 100336\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Pharmaceutics: X\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590156725000210\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics: X","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590156725000210","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Formulation, in silico, in vitro characterization, cytotoxicity and cellular uptake of cyclodextrin complexes and ion pairing/salt formation with functional excipients (azelaic acid, tartaric acid, and arginine) with raloxifene
With advancements in drug repurposing, the search for effective and less harmful anticancer agents remains a critical endeavor. Raloxifene, although not a typical anticancer drug, holds promise in this context. However, its poor solubility poses a significant challenge to its therapeutic potential and formulation efficiency. Functional excipients such as cyclodextrins (e.g., β-cyclodextrin, hydroxy propyl β-cyclodextrin, and Captisol) and pH-modifying excipients (e.g., tartaric acid, azelaic acid, and arginine) were investigated to enhance solubility, dissolution, cytotoxicity and cellular uptakes employing Caco-2 cell lines through binary solid dispersions. In silico studies suggested the potential for salt formation with raloxifene-azelaic acid and raloxifene-tartaric acid, as well as inclusion complexes with cyclodextrins. Experimental results showed that pH-modifying excipients, particularly tartaric and azelaic acids, significantly improved solubility (up to an 800-fold increase), outperforming cyclodextrins (8-fold increase) compared to the untreated drug. Cytotoxicity studies on the human breast cancer (Michigan cancer foundation, MCF-7) cells revealed that raloxifene-tartaric acid significantly enhanced cell killing, achieving efficacy comparable to the standard anticancer drug Taxol. Additionally, both fluorescence-labeled raloxifene: hydroxy propyl β-cyclodextrin coprecipitated mixtures (Coppt) and raloxifene: tartaric acid Coppt exhibited concentration- and time-dependent cellular uptake, with mean fluorescence intensity increasing significantly at 24 h, indicating rapid internalization and sustained intracellular retention, especially at higher concentrations. More interestingly, the superior cellular uptake was in favor of the latter, indicating the pH-modifying excipient tartaric acid, and these findings correlated well with solubility and dissolution studies.
期刊介绍:
International Journal of Pharmaceutics: X offers authors with high-quality research who want to publish in a gold open access journal the opportunity to make their work immediately, permanently, and freely accessible.
International Journal of Pharmaceutics: X authors will pay an article publishing charge (APC), have a choice of license options, and retain copyright. Please check the APC here. The journal is indexed in SCOPUS, PUBMED, PMC and DOAJ.
The International Journal of Pharmaceutics is the second most cited journal in the "Pharmacy & Pharmacology" category out of 358 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.