Zhengming Yi , Qi Tao , Xueqing Liu , Linqiang Cui , Jianlan Li , Luyi Lu
{"title":"双面光伏板亲水/超亲水粉尘表面凝结特性及自洁规律实验研究","authors":"Zhengming Yi , Qi Tao , Xueqing Liu , Linqiang Cui , Jianlan Li , Luyi Lu","doi":"10.1016/j.renene.2025.123414","DOIUrl":null,"url":null,"abstract":"<div><div>Dust deposition can significantly reduce the conversion efficiency of bifacial photovoltaic modules. In order to solve this problem, the condensation characteristics of bifacial photovoltaic panels with hydrophilic and super-hydrophilic surfaces are studied. The kinetical models of condensation liquid and particles are established, and their dynamic interactions are analyzed. The self-cleaning mechanisms of hydrophilic and super-hydrophilic surfaces are revealed. The results indicate that condensate on hydrophilic surfaces primarily forms droplets condensation, with a small amount of film-like condensation. In contrast, super-hydrophilic surfaces exhibit only film-like condensation. The head of droplet condensation has a slight self-cleaning power. The increased thermal resistance caused by the film-like tail prolongs the condensation cycle, thereby inhibiting the self-cleaning process. When transmissivity drops to approximately 65 % after PV dust accumulation, dust particles reduce the hydrophilic surfaces condensation cycle by about 25 %. Under the condition of dust deposition at the photovoltaic site, the transmissivity recovery values for bifacial photovoltaic modules are below 6.21 % for hydrophilic surfaces and 2.00 % for super-hydrophilic surfaces, respectively. Super-hydrophilic surfaces exhibit inferior self-cleaning performance compared to hydrophilic surfaces. These results provide theoretical support for solving the problem of bifacial photovoltaic panels dust accumulation.</div></div>","PeriodicalId":419,"journal":{"name":"Renewable Energy","volume":"251 ","pages":"Article 123414"},"PeriodicalIF":9.0000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental investigation on the condensation characteristics and self-cleaning law of hydrophilic/super-hydrophilic dusty surfaces of bifacial photovoltaic panels\",\"authors\":\"Zhengming Yi , Qi Tao , Xueqing Liu , Linqiang Cui , Jianlan Li , Luyi Lu\",\"doi\":\"10.1016/j.renene.2025.123414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Dust deposition can significantly reduce the conversion efficiency of bifacial photovoltaic modules. In order to solve this problem, the condensation characteristics of bifacial photovoltaic panels with hydrophilic and super-hydrophilic surfaces are studied. The kinetical models of condensation liquid and particles are established, and their dynamic interactions are analyzed. The self-cleaning mechanisms of hydrophilic and super-hydrophilic surfaces are revealed. The results indicate that condensate on hydrophilic surfaces primarily forms droplets condensation, with a small amount of film-like condensation. In contrast, super-hydrophilic surfaces exhibit only film-like condensation. The head of droplet condensation has a slight self-cleaning power. The increased thermal resistance caused by the film-like tail prolongs the condensation cycle, thereby inhibiting the self-cleaning process. When transmissivity drops to approximately 65 % after PV dust accumulation, dust particles reduce the hydrophilic surfaces condensation cycle by about 25 %. Under the condition of dust deposition at the photovoltaic site, the transmissivity recovery values for bifacial photovoltaic modules are below 6.21 % for hydrophilic surfaces and 2.00 % for super-hydrophilic surfaces, respectively. Super-hydrophilic surfaces exhibit inferior self-cleaning performance compared to hydrophilic surfaces. These results provide theoretical support for solving the problem of bifacial photovoltaic panels dust accumulation.</div></div>\",\"PeriodicalId\":419,\"journal\":{\"name\":\"Renewable Energy\",\"volume\":\"251 \",\"pages\":\"Article 123414\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Renewable Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960148125010766\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960148125010766","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Experimental investigation on the condensation characteristics and self-cleaning law of hydrophilic/super-hydrophilic dusty surfaces of bifacial photovoltaic panels
Dust deposition can significantly reduce the conversion efficiency of bifacial photovoltaic modules. In order to solve this problem, the condensation characteristics of bifacial photovoltaic panels with hydrophilic and super-hydrophilic surfaces are studied. The kinetical models of condensation liquid and particles are established, and their dynamic interactions are analyzed. The self-cleaning mechanisms of hydrophilic and super-hydrophilic surfaces are revealed. The results indicate that condensate on hydrophilic surfaces primarily forms droplets condensation, with a small amount of film-like condensation. In contrast, super-hydrophilic surfaces exhibit only film-like condensation. The head of droplet condensation has a slight self-cleaning power. The increased thermal resistance caused by the film-like tail prolongs the condensation cycle, thereby inhibiting the self-cleaning process. When transmissivity drops to approximately 65 % after PV dust accumulation, dust particles reduce the hydrophilic surfaces condensation cycle by about 25 %. Under the condition of dust deposition at the photovoltaic site, the transmissivity recovery values for bifacial photovoltaic modules are below 6.21 % for hydrophilic surfaces and 2.00 % for super-hydrophilic surfaces, respectively. Super-hydrophilic surfaces exhibit inferior self-cleaning performance compared to hydrophilic surfaces. These results provide theoretical support for solving the problem of bifacial photovoltaic panels dust accumulation.
期刊介绍:
Renewable Energy journal is dedicated to advancing knowledge and disseminating insights on various topics and technologies within renewable energy systems and components. Our mission is to support researchers, engineers, economists, manufacturers, NGOs, associations, and societies in staying updated on new developments in their respective fields and applying alternative energy solutions to current practices.
As an international, multidisciplinary journal in renewable energy engineering and research, we strive to be a premier peer-reviewed platform and a trusted source of original research and reviews in the field of renewable energy. Join us in our endeavor to drive innovation and progress in sustainable energy solutions.