Ibtissam Hanoun, George Chatzigeorgiou, Fodil Meraghni
{"title":"考虑粘塑性和界面损伤的碳纳米管涂层模糊纤维复合材料分层细观力学建模","authors":"Ibtissam Hanoun, George Chatzigeorgiou, Fodil Meraghni","doi":"10.1016/j.ijsolstr.2025.113409","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates fuzzy fiber composites, characterized by a viscoplastic matrix and fuzzy fibers, i.e. fibers coated with radially aligned carbon nanotubes (CNTs). A comprehensive micromechanical framework is developed to model and optimize these composites, with a particular emphasis on interfacial damage mechanisms introduced through microvoids growth in the region between the fuzzy fibers and the matrix. By developing an equivalent fiber model, the complexity of the multi-phase structure is effectively reduced, facilitating efficient parametric analyses. Various homogenization techniques, including Composite Cylinder Assemblage (CCA), Transformation Field Analysis (TFA), and periodic homogenization, are combined to predict the overall stress–strain responses of the equivalent fiber approach and then the full fuzzy fiber composite. The identification of the framework and model parameters enabled a parametric/sensitivity analysis to study the effect of varying key parameters, including the volume fraction. The results of this paper contribute to a deeper understanding of unidirectional fuzzy fiber composites and establish a foundation for future parametric investigations and fuzzy fiber composite applications accounting for nonlinear regimes.</div></div>","PeriodicalId":14311,"journal":{"name":"International Journal of Solids and Structures","volume":"318 ","pages":"Article 113409"},"PeriodicalIF":3.4000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hierarchical micromechanical modeling for CNT-coated fuzzy fiber composites accounting for viscoplasticity and interfacial damage\",\"authors\":\"Ibtissam Hanoun, George Chatzigeorgiou, Fodil Meraghni\",\"doi\":\"10.1016/j.ijsolstr.2025.113409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates fuzzy fiber composites, characterized by a viscoplastic matrix and fuzzy fibers, i.e. fibers coated with radially aligned carbon nanotubes (CNTs). A comprehensive micromechanical framework is developed to model and optimize these composites, with a particular emphasis on interfacial damage mechanisms introduced through microvoids growth in the region between the fuzzy fibers and the matrix. By developing an equivalent fiber model, the complexity of the multi-phase structure is effectively reduced, facilitating efficient parametric analyses. Various homogenization techniques, including Composite Cylinder Assemblage (CCA), Transformation Field Analysis (TFA), and periodic homogenization, are combined to predict the overall stress–strain responses of the equivalent fiber approach and then the full fuzzy fiber composite. The identification of the framework and model parameters enabled a parametric/sensitivity analysis to study the effect of varying key parameters, including the volume fraction. The results of this paper contribute to a deeper understanding of unidirectional fuzzy fiber composites and establish a foundation for future parametric investigations and fuzzy fiber composite applications accounting for nonlinear regimes.</div></div>\",\"PeriodicalId\":14311,\"journal\":{\"name\":\"International Journal of Solids and Structures\",\"volume\":\"318 \",\"pages\":\"Article 113409\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Solids and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020768325001957\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Solids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020768325001957","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
Hierarchical micromechanical modeling for CNT-coated fuzzy fiber composites accounting for viscoplasticity and interfacial damage
This study investigates fuzzy fiber composites, characterized by a viscoplastic matrix and fuzzy fibers, i.e. fibers coated with radially aligned carbon nanotubes (CNTs). A comprehensive micromechanical framework is developed to model and optimize these composites, with a particular emphasis on interfacial damage mechanisms introduced through microvoids growth in the region between the fuzzy fibers and the matrix. By developing an equivalent fiber model, the complexity of the multi-phase structure is effectively reduced, facilitating efficient parametric analyses. Various homogenization techniques, including Composite Cylinder Assemblage (CCA), Transformation Field Analysis (TFA), and periodic homogenization, are combined to predict the overall stress–strain responses of the equivalent fiber approach and then the full fuzzy fiber composite. The identification of the framework and model parameters enabled a parametric/sensitivity analysis to study the effect of varying key parameters, including the volume fraction. The results of this paper contribute to a deeper understanding of unidirectional fuzzy fiber composites and establish a foundation for future parametric investigations and fuzzy fiber composite applications accounting for nonlinear regimes.
期刊介绍:
The International Journal of Solids and Structures has as its objective the publication and dissemination of original research in Mechanics of Solids and Structures as a field of Applied Science and Engineering. It fosters thus the exchange of ideas among workers in different parts of the world and also among workers who emphasize different aspects of the foundations and applications of the field.
Standing as it does at the cross-roads of Materials Science, Life Sciences, Mathematics, Physics and Engineering Design, the Mechanics of Solids and Structures is experiencing considerable growth as a result of recent technological advances. The Journal, by providing an international medium of communication, is encouraging this growth and is encompassing all aspects of the field from the more classical problems of structural analysis to mechanics of solids continually interacting with other media and including fracture, flow, wave propagation, heat transfer, thermal effects in solids, optimum design methods, model analysis, structural topology and numerical techniques. Interest extends to both inorganic and organic solids and structures.