{"title":"用于流动操纵的热驱动微流体旋流器","authors":"Filippo Azzini , Gian Luca Morini , Beatrice Pulvirenti , Massimiliano Rossi , Marcos Rojas-Cárdenas","doi":"10.1016/j.ijthermalsci.2025.109944","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, an original thermally-driven micro-fluidic swirler for flow manipulation applications is proposed. The swirling mechanisms are thermally activated only. Since the device does not require any moving parts, it is robust and needs extremely low maintenance. The swirling effect is triggered by activating a temperature gradient transversely to the stream-wise direction of the flow. The swirling mechanism corresponds to a combined effect of advection and natural convection inside a squared cross-section straight micro-channel. We here offer a complete characterization of the micro-fluidic system both from an experimental and numerical point of view. A first numerical design and optimization of the device was realized in respect to the swirling effect for parameters such as the Reynolds number and hydraulic diameter of the channel. Subsequently, the study explored the impact of the flow swirling on the heat transfer mechanisms along the channel. Results are proposed in terms of the Nusselt number for a wide range of channel dimensions. On these basis, a physical microfluidic swirler prototype was developed and was experimentally characterized. The experiments where performed via micro particle image velocimetry (<span><math><mi>μ</mi></math></span> – PIV) and velocity fields results were compared to numerical experiments with excellent agreement.</div></div>","PeriodicalId":341,"journal":{"name":"International Journal of Thermal Sciences","volume":"215 ","pages":"Article 109944"},"PeriodicalIF":4.9000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermally-driven microfluidic swirler for flow manipulation\",\"authors\":\"Filippo Azzini , Gian Luca Morini , Beatrice Pulvirenti , Massimiliano Rossi , Marcos Rojas-Cárdenas\",\"doi\":\"10.1016/j.ijthermalsci.2025.109944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, an original thermally-driven micro-fluidic swirler for flow manipulation applications is proposed. The swirling mechanisms are thermally activated only. Since the device does not require any moving parts, it is robust and needs extremely low maintenance. The swirling effect is triggered by activating a temperature gradient transversely to the stream-wise direction of the flow. The swirling mechanism corresponds to a combined effect of advection and natural convection inside a squared cross-section straight micro-channel. We here offer a complete characterization of the micro-fluidic system both from an experimental and numerical point of view. A first numerical design and optimization of the device was realized in respect to the swirling effect for parameters such as the Reynolds number and hydraulic diameter of the channel. Subsequently, the study explored the impact of the flow swirling on the heat transfer mechanisms along the channel. Results are proposed in terms of the Nusselt number for a wide range of channel dimensions. On these basis, a physical microfluidic swirler prototype was developed and was experimentally characterized. The experiments where performed via micro particle image velocimetry (<span><math><mi>μ</mi></math></span> – PIV) and velocity fields results were compared to numerical experiments with excellent agreement.</div></div>\",\"PeriodicalId\":341,\"journal\":{\"name\":\"International Journal of Thermal Sciences\",\"volume\":\"215 \",\"pages\":\"Article 109944\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermal Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1290072925002674\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermal Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1290072925002674","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Thermally-driven microfluidic swirler for flow manipulation
In this work, an original thermally-driven micro-fluidic swirler for flow manipulation applications is proposed. The swirling mechanisms are thermally activated only. Since the device does not require any moving parts, it is robust and needs extremely low maintenance. The swirling effect is triggered by activating a temperature gradient transversely to the stream-wise direction of the flow. The swirling mechanism corresponds to a combined effect of advection and natural convection inside a squared cross-section straight micro-channel. We here offer a complete characterization of the micro-fluidic system both from an experimental and numerical point of view. A first numerical design and optimization of the device was realized in respect to the swirling effect for parameters such as the Reynolds number and hydraulic diameter of the channel. Subsequently, the study explored the impact of the flow swirling on the heat transfer mechanisms along the channel. Results are proposed in terms of the Nusselt number for a wide range of channel dimensions. On these basis, a physical microfluidic swirler prototype was developed and was experimentally characterized. The experiments where performed via micro particle image velocimetry ( – PIV) and velocity fields results were compared to numerical experiments with excellent agreement.
期刊介绍:
The International Journal of Thermal Sciences is a journal devoted to the publication of fundamental studies on the physics of transfer processes in general, with an emphasis on thermal aspects and also applied research on various processes, energy systems and the environment. Articles are published in English and French, and are subject to peer review.
The fundamental subjects considered within the scope of the journal are:
* Heat and relevant mass transfer at all scales (nano, micro and macro) and in all types of material (heterogeneous, composites, biological,...) and fluid flow
* Forced, natural or mixed convection in reactive or non-reactive media
* Single or multi–phase fluid flow with or without phase change
* Near–and far–field radiative heat transfer
* Combined modes of heat transfer in complex systems (for example, plasmas, biological, geological,...)
* Multiscale modelling
The applied research topics include:
* Heat exchangers, heat pipes, cooling processes
* Transport phenomena taking place in industrial processes (chemical, food and agricultural, metallurgical, space and aeronautical, automobile industries)
* Nano–and micro–technology for energy, space, biosystems and devices
* Heat transport analysis in advanced systems
* Impact of energy–related processes on environment, and emerging energy systems
The study of thermophysical properties of materials and fluids, thermal measurement techniques, inverse methods, and the developments of experimental methods are within the scope of the International Journal of Thermal Sciences which also covers the modelling, and numerical methods applied to thermal transfer.