复合金属-介电纳米结构增强c-Si/TiO2异质结薄膜太阳能电池的效率

IF 6 2区 工程技术 Q2 ENERGY & FUELS
Soikot Sarkar, Sajid Muhaimin Choudhury
{"title":"复合金属-介电纳米结构增强c-Si/TiO2异质结薄膜太阳能电池的效率","authors":"Soikot Sarkar,&nbsp;Sajid Muhaimin Choudhury","doi":"10.1016/j.solener.2025.113535","DOIUrl":null,"url":null,"abstract":"<div><div>The hybrid metal–dielectric nanostructures (HMDN) are promising candidates to address the ohmic loss by conventional nanostructures in photovoltaic applications by strong confinement and high scattering directivity. In this study, we present a c-Si/TiO<sub>2</sub> heterojunction thin film solar cell (TFSC) where a pair of triangular HMDN comprised of Ag and AZO was utilized to enhance the longer wavelength light absorption. The presence of the TiO<sub>2</sub> inverted pyramid layer, in combination with the ITO and SiO<sub>2</sub>-based pyramid layers at the front, enhanced the shorter wavelength light absorption by increasing the optical path and facilitating the coupling of incoming light in photonic mode. Consequently, the average absorption by 1000 nm thick photoactive layer reached 83.32 % for AM 1.5G within the wavelength range of 300 – 1100 nm which was investigated by employing the finite-difference time-domain (FDTD) method. The electric field profile and absorbed power density profile demonstrated the respective contributions of each layer in the absorption of light at shorter and longer wavelengths. The structure exhibited a short circuit current density (<span><math><msub><mrow><mi>J</mi></mrow><mrow><mi>s</mi><mi>c</mi></mrow></msub></math></span>) of 37.96 mA/cm<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> and a power conversion efficiency (<span><math><mrow><mi>P</mi><mi>C</mi><mi>E</mi></mrow></math></span>) of 17.42 %. The efficiency of our proposed structure experienced a maximum relative change of 0.34 % when a polarized light was exposed with an angle of 0° to 90°. The incorporation of self-heating in non-isothermal conditions reduced <span><math><mrow><mi>P</mi><mi>C</mi><mi>E</mi></mrow></math></span> by 13.77 %. In addition, the comparative analysis to assess the impact of HMDN on our structure revealed a 4.54 % increase in <span><math><mrow><mi>P</mi><mi>C</mi><mi>E</mi></mrow></math></span> of the structure with metallic nanostructures, paving the way for the utilization of HMDN to enhance the performance of TFSC.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"296 ","pages":"Article 113535"},"PeriodicalIF":6.0000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficiency enhancement of c-Si/TiO2 heterojunction thin film solar cell using hybrid metal-dielectric nanostructures\",\"authors\":\"Soikot Sarkar,&nbsp;Sajid Muhaimin Choudhury\",\"doi\":\"10.1016/j.solener.2025.113535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The hybrid metal–dielectric nanostructures (HMDN) are promising candidates to address the ohmic loss by conventional nanostructures in photovoltaic applications by strong confinement and high scattering directivity. In this study, we present a c-Si/TiO<sub>2</sub> heterojunction thin film solar cell (TFSC) where a pair of triangular HMDN comprised of Ag and AZO was utilized to enhance the longer wavelength light absorption. The presence of the TiO<sub>2</sub> inverted pyramid layer, in combination with the ITO and SiO<sub>2</sub>-based pyramid layers at the front, enhanced the shorter wavelength light absorption by increasing the optical path and facilitating the coupling of incoming light in photonic mode. Consequently, the average absorption by 1000 nm thick photoactive layer reached 83.32 % for AM 1.5G within the wavelength range of 300 – 1100 nm which was investigated by employing the finite-difference time-domain (FDTD) method. The electric field profile and absorbed power density profile demonstrated the respective contributions of each layer in the absorption of light at shorter and longer wavelengths. The structure exhibited a short circuit current density (<span><math><msub><mrow><mi>J</mi></mrow><mrow><mi>s</mi><mi>c</mi></mrow></msub></math></span>) of 37.96 mA/cm<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> and a power conversion efficiency (<span><math><mrow><mi>P</mi><mi>C</mi><mi>E</mi></mrow></math></span>) of 17.42 %. The efficiency of our proposed structure experienced a maximum relative change of 0.34 % when a polarized light was exposed with an angle of 0° to 90°. The incorporation of self-heating in non-isothermal conditions reduced <span><math><mrow><mi>P</mi><mi>C</mi><mi>E</mi></mrow></math></span> by 13.77 %. In addition, the comparative analysis to assess the impact of HMDN on our structure revealed a 4.54 % increase in <span><math><mrow><mi>P</mi><mi>C</mi><mi>E</mi></mrow></math></span> of the structure with metallic nanostructures, paving the way for the utilization of HMDN to enhance the performance of TFSC.</div></div>\",\"PeriodicalId\":428,\"journal\":{\"name\":\"Solar Energy\",\"volume\":\"296 \",\"pages\":\"Article 113535\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038092X25002981\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038092X25002981","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

混合金属-介电纳米结构(HMDN)具有强约束和高散射指向性,有望解决传统纳米结构在光伏应用中的欧姆损耗问题。在这项研究中,我们提出了一种c-Si/TiO2异质结薄膜太阳能电池(TFSC),其中利用一对由Ag和AZO组成的三角形HMDN来增强较长波长的光吸收。TiO2倒金字塔层的存在,与前面的ITO和sio2基金字塔层结合,通过增加光程和促进入射光在光子模式下的耦合,增强了较短波长的光吸收。结果表明,在300 ~ 1100 nm波长范围内,AM 1.5G在1000 nm厚的光活性层上的平均吸收率达到83.32%,采用时域有限差分(FDTD)方法测定。电场分布图和吸收功率密度分布图分别展示了各层对短波长光吸收的贡献。该结构的短路电流密度为37.96 mA/cm2,功率转换效率为17.42%。当偏振光以0°到90°的角度照射时,我们所提出的结构的效率经历了0.34%的最大相对变化。在非等温条件下加入自加热可使PCE降低13.77%。此外,通过对比分析HMDN对结构的影响,发现与金属纳米结构相比,该结构的PCE提高了4.54%,为利用HMDN提高TFSC的性能铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficiency enhancement of c-Si/TiO2 heterojunction thin film solar cell using hybrid metal-dielectric nanostructures
The hybrid metal–dielectric nanostructures (HMDN) are promising candidates to address the ohmic loss by conventional nanostructures in photovoltaic applications by strong confinement and high scattering directivity. In this study, we present a c-Si/TiO2 heterojunction thin film solar cell (TFSC) where a pair of triangular HMDN comprised of Ag and AZO was utilized to enhance the longer wavelength light absorption. The presence of the TiO2 inverted pyramid layer, in combination with the ITO and SiO2-based pyramid layers at the front, enhanced the shorter wavelength light absorption by increasing the optical path and facilitating the coupling of incoming light in photonic mode. Consequently, the average absorption by 1000 nm thick photoactive layer reached 83.32 % for AM 1.5G within the wavelength range of 300 – 1100 nm which was investigated by employing the finite-difference time-domain (FDTD) method. The electric field profile and absorbed power density profile demonstrated the respective contributions of each layer in the absorption of light at shorter and longer wavelengths. The structure exhibited a short circuit current density (Jsc) of 37.96 mA/cm2 and a power conversion efficiency (PCE) of 17.42 %. The efficiency of our proposed structure experienced a maximum relative change of 0.34 % when a polarized light was exposed with an angle of 0° to 90°. The incorporation of self-heating in non-isothermal conditions reduced PCE by 13.77 %. In addition, the comparative analysis to assess the impact of HMDN on our structure revealed a 4.54 % increase in PCE of the structure with metallic nanostructures, paving the way for the utilization of HMDN to enhance the performance of TFSC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar Energy
Solar Energy 工程技术-能源与燃料
CiteScore
13.90
自引率
9.00%
发文量
0
审稿时长
47 days
期刊介绍: Solar Energy welcomes manuscripts presenting information not previously published in journals on any aspect of solar energy research, development, application, measurement or policy. The term "solar energy" in this context includes the indirect uses such as wind energy and biomass
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信