{"title":"一种新颖的用于非线性Klein-Gordon方程超收敛分析的低阶H1-Galerkin混合有限元框架","authors":"Yanmi Wu, Xin Ge","doi":"10.1016/j.cnsns.2025.108912","DOIUrl":null,"url":null,"abstract":"<div><div>A <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-Galerkin mixed finite element method (MFEM) is explored for solving the nonlinear Klein–Gordon equation, utilizing the lower-order bilinear element paired with the zero-order Raviart–Thomas element <span><math><mrow><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mn>11</mn></mrow></msub><mo>+</mo><msub><mrow><mi>Q</mi></mrow><mrow><mn>10</mn></mrow></msub><mspace></mspace><mo>×</mo><mspace></mspace><msub><mrow><mi>Q</mi></mrow><mrow><mn>01</mn></mrow></msub><mo>)</mo></mrow></math></span>. The existence and uniqueness of the solutions for the discretized system are rigorously established. By exploiting the integral identity associated with the bilinear element, a superconvergence estimate linking the interpolation and the Riesz projection is derived. In the semi-discrete framework, the supercloseness of order <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> is achieved for the primary variable <span><math><mi>u</mi></math></span> in the <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> norm and for the auxiliary variable <span><math><mrow><mover><mrow><mi>p</mi></mrow><mo>→</mo></mover><mo>=</mo><mo>∇</mo><mi>u</mi></mrow></math></span> in the <span><math><mrow><mi>H</mi><mrow><mo>(</mo><mtext>div</mtext><mo>;</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span> norm, respectively. Additionally, global superconvergence results are obtained through an interpolation-based postprocessing method. Moving to the fully discrete formulation, a second-order scheme is introduced, which exhibits the supercloseness of order <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span>, where <span><math><mi>h</mi></math></span> represents the subdivision parameter and <span><math><mi>τ</mi></math></span> the time increment. Finally, the numerical experiments are conducted to confirm the validity of the theoretical findings.</div></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":"149 ","pages":"Article 108912"},"PeriodicalIF":3.4000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An innovative low-order H1-Galerkin mixed finite element framework for superconvergence analysis in nonlinear Klein–Gordon equations\",\"authors\":\"Yanmi Wu, Xin Ge\",\"doi\":\"10.1016/j.cnsns.2025.108912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-Galerkin mixed finite element method (MFEM) is explored for solving the nonlinear Klein–Gordon equation, utilizing the lower-order bilinear element paired with the zero-order Raviart–Thomas element <span><math><mrow><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mn>11</mn></mrow></msub><mo>+</mo><msub><mrow><mi>Q</mi></mrow><mrow><mn>10</mn></mrow></msub><mspace></mspace><mo>×</mo><mspace></mspace><msub><mrow><mi>Q</mi></mrow><mrow><mn>01</mn></mrow></msub><mo>)</mo></mrow></math></span>. The existence and uniqueness of the solutions for the discretized system are rigorously established. By exploiting the integral identity associated with the bilinear element, a superconvergence estimate linking the interpolation and the Riesz projection is derived. In the semi-discrete framework, the supercloseness of order <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> is achieved for the primary variable <span><math><mi>u</mi></math></span> in the <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> norm and for the auxiliary variable <span><math><mrow><mover><mrow><mi>p</mi></mrow><mo>→</mo></mover><mo>=</mo><mo>∇</mo><mi>u</mi></mrow></math></span> in the <span><math><mrow><mi>H</mi><mrow><mo>(</mo><mtext>div</mtext><mo>;</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span> norm, respectively. Additionally, global superconvergence results are obtained through an interpolation-based postprocessing method. Moving to the fully discrete formulation, a second-order scheme is introduced, which exhibits the supercloseness of order <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span>, where <span><math><mi>h</mi></math></span> represents the subdivision parameter and <span><math><mi>τ</mi></math></span> the time increment. Finally, the numerical experiments are conducted to confirm the validity of the theoretical findings.</div></div>\",\"PeriodicalId\":50658,\"journal\":{\"name\":\"Communications in Nonlinear Science and Numerical Simulation\",\"volume\":\"149 \",\"pages\":\"Article 108912\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Nonlinear Science and Numerical Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1007570425003235\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007570425003235","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
An innovative low-order H1-Galerkin mixed finite element framework for superconvergence analysis in nonlinear Klein–Gordon equations
A -Galerkin mixed finite element method (MFEM) is explored for solving the nonlinear Klein–Gordon equation, utilizing the lower-order bilinear element paired with the zero-order Raviart–Thomas element . The existence and uniqueness of the solutions for the discretized system are rigorously established. By exploiting the integral identity associated with the bilinear element, a superconvergence estimate linking the interpolation and the Riesz projection is derived. In the semi-discrete framework, the supercloseness of order is achieved for the primary variable in the norm and for the auxiliary variable in the norm, respectively. Additionally, global superconvergence results are obtained through an interpolation-based postprocessing method. Moving to the fully discrete formulation, a second-order scheme is introduced, which exhibits the supercloseness of order , where represents the subdivision parameter and the time increment. Finally, the numerical experiments are conducted to confirm the validity of the theoretical findings.
期刊介绍:
The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity.
The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged.
Topics of interest:
Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity.
No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.