Jiaxin Tian , Yanhong Xie , Sen Ye , Yongfeng Hu , Jiaxin Feng , Yi Li , Zhongze Lou , Liemin Ruan , Zhengchun Wang
{"title":"s -氯胺酮通过抑制神经炎症、突触恢复和BDNF通路激活来改善小鼠脑卒中后抑郁","authors":"Jiaxin Tian , Yanhong Xie , Sen Ye , Yongfeng Hu , Jiaxin Feng , Yi Li , Zhongze Lou , Liemin Ruan , Zhengchun Wang","doi":"10.1016/j.bbrc.2025.151965","DOIUrl":null,"url":null,"abstract":"<div><div>The available therapeutic options for post-stroke depression patients are limited. Although SSRIs are the most commonly prescribed antidepressants, their slow onset of action and the higher risk of adverse effects or contraindications have led to an urgent need to develop fast-acting and highly specific antidepressants tailored to the needs of PSD patients. Therefore, ketamine has drawn attention. While ketamine has been shown to exert rapid antidepressant effects in numerous studies, whether it can ameliorate PSD remains unclear, and the molecular and cellular mechanisms underlying its therapeutic action in PSD are largely elusive. In this study, we used a PSD preclinical model induced by photothrombosis and chronic restraint stress to investigate the effects of <em>S</em>-ketamine. The present study demonstrates that a single acute intraperitoneal injection of 10 mg/kg <em>S</em>-ketamine on the first day after PSD significantly alleviates depressive-like behaviours in PSD mice. In addition, this improvement was maintained for at least five consecutive days. Mechanistically, <em>S</em>-ketamine reduced pro-inflammatory cytokines in the medial prefrontal cortex (mPFC), mitigated synaptic damage (evidenced by increased dendritic spine density, SYP, and PSD-95 expression). Furthermore, <em>S</em>-ketamine treatment upregulated the expression of brain-derived neurotrophic factor (BDNF), tropomyosin related kinase B (TrkB), phosphorylated serine/threonine-specific protein kinase B (p-Akt), phosphorylated extracellular signal–regulated kinase (p-Erk), phosphorylated calcium/calmodulin-dependent protein kinase II (p-CaMKII), and phosphorylated cAMP response element binding protein (p-CREB). Overall, <em>S</em>-ketamine shows promise for PSD treatment through its anti-inflammatory, synaptic enhancing, and BDNF pathway modulating effects. This research enhances our understanding of the pathological mechanisms underlying PSD and provides new therapeutic insights for its treatment.</div></div>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":"769 ","pages":"Article 151965"},"PeriodicalIF":2.5000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"S-ketamine ameliorates post-stroke depression in mice via attenuation of neuroinflammation, synaptic restoration, and BDNF pathway activation\",\"authors\":\"Jiaxin Tian , Yanhong Xie , Sen Ye , Yongfeng Hu , Jiaxin Feng , Yi Li , Zhongze Lou , Liemin Ruan , Zhengchun Wang\",\"doi\":\"10.1016/j.bbrc.2025.151965\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The available therapeutic options for post-stroke depression patients are limited. Although SSRIs are the most commonly prescribed antidepressants, their slow onset of action and the higher risk of adverse effects or contraindications have led to an urgent need to develop fast-acting and highly specific antidepressants tailored to the needs of PSD patients. Therefore, ketamine has drawn attention. While ketamine has been shown to exert rapid antidepressant effects in numerous studies, whether it can ameliorate PSD remains unclear, and the molecular and cellular mechanisms underlying its therapeutic action in PSD are largely elusive. In this study, we used a PSD preclinical model induced by photothrombosis and chronic restraint stress to investigate the effects of <em>S</em>-ketamine. The present study demonstrates that a single acute intraperitoneal injection of 10 mg/kg <em>S</em>-ketamine on the first day after PSD significantly alleviates depressive-like behaviours in PSD mice. In addition, this improvement was maintained for at least five consecutive days. Mechanistically, <em>S</em>-ketamine reduced pro-inflammatory cytokines in the medial prefrontal cortex (mPFC), mitigated synaptic damage (evidenced by increased dendritic spine density, SYP, and PSD-95 expression). Furthermore, <em>S</em>-ketamine treatment upregulated the expression of brain-derived neurotrophic factor (BDNF), tropomyosin related kinase B (TrkB), phosphorylated serine/threonine-specific protein kinase B (p-Akt), phosphorylated extracellular signal–regulated kinase (p-Erk), phosphorylated calcium/calmodulin-dependent protein kinase II (p-CaMKII), and phosphorylated cAMP response element binding protein (p-CREB). Overall, <em>S</em>-ketamine shows promise for PSD treatment through its anti-inflammatory, synaptic enhancing, and BDNF pathway modulating effects. This research enhances our understanding of the pathological mechanisms underlying PSD and provides new therapeutic insights for its treatment.</div></div>\",\"PeriodicalId\":8779,\"journal\":{\"name\":\"Biochemical and biophysical research communications\",\"volume\":\"769 \",\"pages\":\"Article 151965\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical and biophysical research communications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0006291X25006795\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006291X25006795","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
S-ketamine ameliorates post-stroke depression in mice via attenuation of neuroinflammation, synaptic restoration, and BDNF pathway activation
The available therapeutic options for post-stroke depression patients are limited. Although SSRIs are the most commonly prescribed antidepressants, their slow onset of action and the higher risk of adverse effects or contraindications have led to an urgent need to develop fast-acting and highly specific antidepressants tailored to the needs of PSD patients. Therefore, ketamine has drawn attention. While ketamine has been shown to exert rapid antidepressant effects in numerous studies, whether it can ameliorate PSD remains unclear, and the molecular and cellular mechanisms underlying its therapeutic action in PSD are largely elusive. In this study, we used a PSD preclinical model induced by photothrombosis and chronic restraint stress to investigate the effects of S-ketamine. The present study demonstrates that a single acute intraperitoneal injection of 10 mg/kg S-ketamine on the first day after PSD significantly alleviates depressive-like behaviours in PSD mice. In addition, this improvement was maintained for at least five consecutive days. Mechanistically, S-ketamine reduced pro-inflammatory cytokines in the medial prefrontal cortex (mPFC), mitigated synaptic damage (evidenced by increased dendritic spine density, SYP, and PSD-95 expression). Furthermore, S-ketamine treatment upregulated the expression of brain-derived neurotrophic factor (BDNF), tropomyosin related kinase B (TrkB), phosphorylated serine/threonine-specific protein kinase B (p-Akt), phosphorylated extracellular signal–regulated kinase (p-Erk), phosphorylated calcium/calmodulin-dependent protein kinase II (p-CaMKII), and phosphorylated cAMP response element binding protein (p-CREB). Overall, S-ketamine shows promise for PSD treatment through its anti-inflammatory, synaptic enhancing, and BDNF pathway modulating effects. This research enhances our understanding of the pathological mechanisms underlying PSD and provides new therapeutic insights for its treatment.
期刊介绍:
Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology
; molecular biology; neurobiology; plant biology and proteomics