基于DInSAR的东喜马拉雅地区雪深估算新模型

IF 2.8 3区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS
Manmit Kumar Singh , Ritu Anilkumar , Rishikesh Bharti
{"title":"基于DInSAR的东喜马拉雅地区雪深估算新模型","authors":"Manmit Kumar Singh ,&nbsp;Ritu Anilkumar ,&nbsp;Rishikesh Bharti","doi":"10.1016/j.asr.2025.03.059","DOIUrl":null,"url":null,"abstract":"<div><div>Assessing snow depth is crucial for various environmental, hydrological, and climatological studies. Snow depth measurement utilizing conventional techniques often encounters challenges in high-altitude remote locations. In this scenario, space-borne remote sensing has proven to be a scientific tool to estimate snow depth. With the availability of Sentinel-1, a C-band Synthetic Aperture Radar (SAR) data, snow depth estimation is being widely studied. This study introduces an improved snow depth inversion model utilizing the Differential Interferometric Synthetic Aperture Radar (DInSAR) technique in conjunction with inputs from Landsat-9. The Level 2, Landsat-9 dataset is used to estimate the snow wetness and the snow cover map. The corresponding state-of-the-art empirical equations are utilized to predict snow dielectric, an important input for the snow depth inversion model. The performance of the proposed snow depth inversion model shows improvement after implementing the modified weight function and scaling values to the existing model. The final snow depth inversion model achieves a Root Mean Squared Error (RMSE) of 5.74 cm and a Mean Absolute Error (MAE) of 4.94 cm, demonstrating significant accuracy in estimating snow depth over the alpine regions of the Eastern Himalayas. The intermediate accuracy values (9.58 cm and 7.90 cm) are mentioned in the study for context. This may contribute to a better understanding of snowpack dynamics and enhance the efficacy of water resource management strategies in alpine areas of the Eastern Himalayas.</div></div>","PeriodicalId":50850,"journal":{"name":"Advances in Space Research","volume":"75 11","pages":"Pages 8027-8040"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel snow depth estimation model for the Eastern Himalayas using DInSAR\",\"authors\":\"Manmit Kumar Singh ,&nbsp;Ritu Anilkumar ,&nbsp;Rishikesh Bharti\",\"doi\":\"10.1016/j.asr.2025.03.059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Assessing snow depth is crucial for various environmental, hydrological, and climatological studies. Snow depth measurement utilizing conventional techniques often encounters challenges in high-altitude remote locations. In this scenario, space-borne remote sensing has proven to be a scientific tool to estimate snow depth. With the availability of Sentinel-1, a C-band Synthetic Aperture Radar (SAR) data, snow depth estimation is being widely studied. This study introduces an improved snow depth inversion model utilizing the Differential Interferometric Synthetic Aperture Radar (DInSAR) technique in conjunction with inputs from Landsat-9. The Level 2, Landsat-9 dataset is used to estimate the snow wetness and the snow cover map. The corresponding state-of-the-art empirical equations are utilized to predict snow dielectric, an important input for the snow depth inversion model. The performance of the proposed snow depth inversion model shows improvement after implementing the modified weight function and scaling values to the existing model. The final snow depth inversion model achieves a Root Mean Squared Error (RMSE) of 5.74 cm and a Mean Absolute Error (MAE) of 4.94 cm, demonstrating significant accuracy in estimating snow depth over the alpine regions of the Eastern Himalayas. The intermediate accuracy values (9.58 cm and 7.90 cm) are mentioned in the study for context. This may contribute to a better understanding of snowpack dynamics and enhance the efficacy of water resource management strategies in alpine areas of the Eastern Himalayas.</div></div>\",\"PeriodicalId\":50850,\"journal\":{\"name\":\"Advances in Space Research\",\"volume\":\"75 11\",\"pages\":\"Pages 8027-8040\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Space Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0273117725002984\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Space Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0273117725002984","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

评估雪深对各种环境、水文和气候研究至关重要。利用传统技术测量雪深在高海拔偏远地区经常遇到挑战。在这种情况下,星载遥感已被证明是估计雪深的科学工具。随着c波段合成孔径雷达(SAR) Sentinel-1数据的可用性,雪深估计得到了广泛的研究。本文利用差分干涉合成孔径雷达(DInSAR)技术,结合Landsat-9卫星的数据输入,提出了一种改进的雪深反演模型。2级Landsat-9数据集用于估算雪湿度和积雪覆盖图。利用相应的最先进经验方程来预测雪介电,这是雪深反演模型的重要输入。将修正后的权函数和标度值应用于现有模型后,雪深反演模型的性能得到了改善。最终雪深反演模型的均方根误差(RMSE)为5.74 cm,平均绝对误差(MAE)为4.94 cm,显示了对喜马拉雅东部高寒地区雪深的准确估计。文中提到了中间精度值(9.58 cm和7.90 cm)。这可能有助于更好地了解积雪动态,并提高东喜马拉雅高寒地区水资源管理战略的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel snow depth estimation model for the Eastern Himalayas using DInSAR
Assessing snow depth is crucial for various environmental, hydrological, and climatological studies. Snow depth measurement utilizing conventional techniques often encounters challenges in high-altitude remote locations. In this scenario, space-borne remote sensing has proven to be a scientific tool to estimate snow depth. With the availability of Sentinel-1, a C-band Synthetic Aperture Radar (SAR) data, snow depth estimation is being widely studied. This study introduces an improved snow depth inversion model utilizing the Differential Interferometric Synthetic Aperture Radar (DInSAR) technique in conjunction with inputs from Landsat-9. The Level 2, Landsat-9 dataset is used to estimate the snow wetness and the snow cover map. The corresponding state-of-the-art empirical equations are utilized to predict snow dielectric, an important input for the snow depth inversion model. The performance of the proposed snow depth inversion model shows improvement after implementing the modified weight function and scaling values to the existing model. The final snow depth inversion model achieves a Root Mean Squared Error (RMSE) of 5.74 cm and a Mean Absolute Error (MAE) of 4.94 cm, demonstrating significant accuracy in estimating snow depth over the alpine regions of the Eastern Himalayas. The intermediate accuracy values (9.58 cm and 7.90 cm) are mentioned in the study for context. This may contribute to a better understanding of snowpack dynamics and enhance the efficacy of water resource management strategies in alpine areas of the Eastern Himalayas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Space Research
Advances in Space Research 地学天文-地球科学综合
CiteScore
5.20
自引率
11.50%
发文量
800
审稿时长
5.8 months
期刊介绍: The COSPAR publication Advances in Space Research (ASR) is an open journal covering all areas of space research including: space studies of the Earth''s surface, meteorology, climate, the Earth-Moon system, planets and small bodies of the solar system, upper atmospheres, ionospheres and magnetospheres of the Earth and planets including reference atmospheres, space plasmas in the solar system, astrophysics from space, materials sciences in space, fundamental physics in space, space debris, space weather, Earth observations of space phenomena, etc. NB: Please note that manuscripts related to life sciences as related to space are no more accepted for submission to Advances in Space Research. Such manuscripts should now be submitted to the new COSPAR Journal Life Sciences in Space Research (LSSR). All submissions are reviewed by two scientists in the field. COSPAR is an interdisciplinary scientific organization concerned with the progress of space research on an international scale. Operating under the rules of ICSU, COSPAR ignores political considerations and considers all questions solely from the scientific viewpoint.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信