Wakeel Ahmed , Shahid Zaman , Tamseela Ashraf , Asma Raza
{"title":"Banach空间不动点问题的一种较好的迭代算法及其应用","authors":"Wakeel Ahmed , Shahid Zaman , Tamseela Ashraf , Asma Raza","doi":"10.1016/j.padiff.2025.101175","DOIUrl":null,"url":null,"abstract":"<div><div>In this research article, we explore convergence results within the framework of Banach spaces by focusing on a specific iterative scheme, namely the T-iterative algorithm (TIA). Utilizing the Chatterjea–Suzuki-C (CSC) condition, we establish both strong and weak convergence. To validate the efficacy of our proposed iterative schemes, we conduct numerical experiments using MATLAB R2021a, demonstrating that our approach achieves a faster rate of convergence compared to existing methods. Furthermore, we give a clear example of complete mappings that satisfy the CSC condition whose fixed point is unique. As a practical application, we apply the main results to solve functional and fractional differential equations (FDEs), illustrating the broader applicability of our findings.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"14 ","pages":"Article 101175"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A better iterative algorithm for fixed-point problem in Banach spaces with application\",\"authors\":\"Wakeel Ahmed , Shahid Zaman , Tamseela Ashraf , Asma Raza\",\"doi\":\"10.1016/j.padiff.2025.101175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this research article, we explore convergence results within the framework of Banach spaces by focusing on a specific iterative scheme, namely the T-iterative algorithm (TIA). Utilizing the Chatterjea–Suzuki-C (CSC) condition, we establish both strong and weak convergence. To validate the efficacy of our proposed iterative schemes, we conduct numerical experiments using MATLAB R2021a, demonstrating that our approach achieves a faster rate of convergence compared to existing methods. Furthermore, we give a clear example of complete mappings that satisfy the CSC condition whose fixed point is unique. As a practical application, we apply the main results to solve functional and fractional differential equations (FDEs), illustrating the broader applicability of our findings.</div></div>\",\"PeriodicalId\":34531,\"journal\":{\"name\":\"Partial Differential Equations in Applied Mathematics\",\"volume\":\"14 \",\"pages\":\"Article 101175\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Partial Differential Equations in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666818125001020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818125001020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
A better iterative algorithm for fixed-point problem in Banach spaces with application
In this research article, we explore convergence results within the framework of Banach spaces by focusing on a specific iterative scheme, namely the T-iterative algorithm (TIA). Utilizing the Chatterjea–Suzuki-C (CSC) condition, we establish both strong and weak convergence. To validate the efficacy of our proposed iterative schemes, we conduct numerical experiments using MATLAB R2021a, demonstrating that our approach achieves a faster rate of convergence compared to existing methods. Furthermore, we give a clear example of complete mappings that satisfy the CSC condition whose fixed point is unique. As a practical application, we apply the main results to solve functional and fractional differential equations (FDEs), illustrating the broader applicability of our findings.