Banach空间不动点问题的一种较好的迭代算法及其应用

Q1 Mathematics
Wakeel Ahmed , Shahid Zaman , Tamseela Ashraf , Asma Raza
{"title":"Banach空间不动点问题的一种较好的迭代算法及其应用","authors":"Wakeel Ahmed ,&nbsp;Shahid Zaman ,&nbsp;Tamseela Ashraf ,&nbsp;Asma Raza","doi":"10.1016/j.padiff.2025.101175","DOIUrl":null,"url":null,"abstract":"<div><div>In this research article, we explore convergence results within the framework of Banach spaces by focusing on a specific iterative scheme, namely the T-iterative algorithm (TIA). Utilizing the Chatterjea–Suzuki-C (CSC) condition, we establish both strong and weak convergence. To validate the efficacy of our proposed iterative schemes, we conduct numerical experiments using MATLAB R2021a, demonstrating that our approach achieves a faster rate of convergence compared to existing methods. Furthermore, we give a clear example of complete mappings that satisfy the CSC condition whose fixed point is unique. As a practical application, we apply the main results to solve functional and fractional differential equations (FDEs), illustrating the broader applicability of our findings.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"14 ","pages":"Article 101175"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A better iterative algorithm for fixed-point problem in Banach spaces with application\",\"authors\":\"Wakeel Ahmed ,&nbsp;Shahid Zaman ,&nbsp;Tamseela Ashraf ,&nbsp;Asma Raza\",\"doi\":\"10.1016/j.padiff.2025.101175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this research article, we explore convergence results within the framework of Banach spaces by focusing on a specific iterative scheme, namely the T-iterative algorithm (TIA). Utilizing the Chatterjea–Suzuki-C (CSC) condition, we establish both strong and weak convergence. To validate the efficacy of our proposed iterative schemes, we conduct numerical experiments using MATLAB R2021a, demonstrating that our approach achieves a faster rate of convergence compared to existing methods. Furthermore, we give a clear example of complete mappings that satisfy the CSC condition whose fixed point is unique. As a practical application, we apply the main results to solve functional and fractional differential equations (FDEs), illustrating the broader applicability of our findings.</div></div>\",\"PeriodicalId\":34531,\"journal\":{\"name\":\"Partial Differential Equations in Applied Mathematics\",\"volume\":\"14 \",\"pages\":\"Article 101175\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Partial Differential Equations in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666818125001020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818125001020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

在这篇研究文章中,我们通过关注一个特定的迭代方案,即t -迭代算法(TIA)来探索Banach空间框架内的收敛结果。利用Chatterjea-Suzuki-C (CSC)条件,建立了强收敛性和弱收敛性。为了验证我们提出的迭代方案的有效性,我们在MATLAB R2021a上进行了数值实验,表明我们的方法与现有方法相比具有更快的收敛速度。在此基础上,给出了满足CSC条件且不动点唯一的完全映射的实例。作为实际应用,我们将主要结果应用于求解泛函和分数阶微分方程(FDEs),说明我们的发现具有更广泛的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A better iterative algorithm for fixed-point problem in Banach spaces with application
In this research article, we explore convergence results within the framework of Banach spaces by focusing on a specific iterative scheme, namely the T-iterative algorithm (TIA). Utilizing the Chatterjea–Suzuki-C (CSC) condition, we establish both strong and weak convergence. To validate the efficacy of our proposed iterative schemes, we conduct numerical experiments using MATLAB R2021a, demonstrating that our approach achieves a faster rate of convergence compared to existing methods. Furthermore, we give a clear example of complete mappings that satisfy the CSC condition whose fixed point is unique. As a practical application, we apply the main results to solve functional and fractional differential equations (FDEs), illustrating the broader applicability of our findings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信