用无网格配点法求解输电线不连续非线性电报方程

Q1 Mathematics
Muhammad Asif , Tabassum Gul , Muhammad Bilal Riaz , Faisal Bilal
{"title":"用无网格配点法求解输电线不连续非线性电报方程","authors":"Muhammad Asif ,&nbsp;Tabassum Gul ,&nbsp;Muhammad Bilal Riaz ,&nbsp;Faisal Bilal","doi":"10.1016/j.padiff.2025.101219","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we present a novel hybrid numerical technique combining radial basis functions (RBFs) and the finite difference method (FDM) for solving the one-dimensional telegraph interface model (TIM). The presence of interfaces or discontinuities along the transmission line requires additional boundary or interface conditions to accurately describe the voltage and current behaviors at these junctions. Our method incorporates these interface conditions, approximating spatial partial derivatives using RBFs and time derivatives using FDM. To validate our approach, we applied it to several benchmark linear and nonlinear TIMs. For linear models, the resulting algebraic system is solved using Gauss elimination, while for nonlinear models, we employed the quasi-Newton method to linearize the nonlinear terms. We evaluated the method’s performance by calculating the maximum absolute errors (MAEs) and root mean square errors (RMSEs) for different grid points (GPs). Additionally, we compared the true and estimate solutions through three dimensional (3D)graphs. The numerical results show that our technique provides simple implementation, quick convergence, and outstanding accuracy for both linear and nonlinear models. This hybrid approach proves to be a highly effective and reliable tool for solving telegraph interface problems.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"14 ","pages":"Article 101219"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solution of nonlinear telegraph equation with discontinuities along the transmission line using meshless collocation method\",\"authors\":\"Muhammad Asif ,&nbsp;Tabassum Gul ,&nbsp;Muhammad Bilal Riaz ,&nbsp;Faisal Bilal\",\"doi\":\"10.1016/j.padiff.2025.101219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we present a novel hybrid numerical technique combining radial basis functions (RBFs) and the finite difference method (FDM) for solving the one-dimensional telegraph interface model (TIM). The presence of interfaces or discontinuities along the transmission line requires additional boundary or interface conditions to accurately describe the voltage and current behaviors at these junctions. Our method incorporates these interface conditions, approximating spatial partial derivatives using RBFs and time derivatives using FDM. To validate our approach, we applied it to several benchmark linear and nonlinear TIMs. For linear models, the resulting algebraic system is solved using Gauss elimination, while for nonlinear models, we employed the quasi-Newton method to linearize the nonlinear terms. We evaluated the method’s performance by calculating the maximum absolute errors (MAEs) and root mean square errors (RMSEs) for different grid points (GPs). Additionally, we compared the true and estimate solutions through three dimensional (3D)graphs. The numerical results show that our technique provides simple implementation, quick convergence, and outstanding accuracy for both linear and nonlinear models. This hybrid approach proves to be a highly effective and reliable tool for solving telegraph interface problems.</div></div>\",\"PeriodicalId\":34531,\"journal\":{\"name\":\"Partial Differential Equations in Applied Mathematics\",\"volume\":\"14 \",\"pages\":\"Article 101219\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Partial Differential Equations in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666818125001469\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818125001469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种结合径向基函数(rbf)和有限差分法(FDM)求解一维电报界面模型(TIM)的混合数值方法。传输线上的界面或不连续点的存在需要额外的边界或界面条件来准确地描述这些接点上的电压和电流行为。我们的方法结合了这些界面条件,使用rbf近似空间偏导数,使用FDM近似时间导数。为了验证我们的方法,我们将其应用于几个基准线性和非线性TIMs。对于线性模型,我们采用高斯消元法求解得到的代数系统,而对于非线性模型,我们采用拟牛顿法对非线性项进行线性化。我们通过计算不同网格点(GPs)的最大绝对误差(MAEs)和均方根误差(rmse)来评估该方法的性能。此外,我们通过三维(3D)图比较了真解和估计解。数值结果表明,该方法实现简单,收敛速度快,对线性和非线性模型都具有较高的精度。这种混合方法被证明是解决电报接口问题的一种高效可靠的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solution of nonlinear telegraph equation with discontinuities along the transmission line using meshless collocation method
In this paper, we present a novel hybrid numerical technique combining radial basis functions (RBFs) and the finite difference method (FDM) for solving the one-dimensional telegraph interface model (TIM). The presence of interfaces or discontinuities along the transmission line requires additional boundary or interface conditions to accurately describe the voltage and current behaviors at these junctions. Our method incorporates these interface conditions, approximating spatial partial derivatives using RBFs and time derivatives using FDM. To validate our approach, we applied it to several benchmark linear and nonlinear TIMs. For linear models, the resulting algebraic system is solved using Gauss elimination, while for nonlinear models, we employed the quasi-Newton method to linearize the nonlinear terms. We evaluated the method’s performance by calculating the maximum absolute errors (MAEs) and root mean square errors (RMSEs) for different grid points (GPs). Additionally, we compared the true and estimate solutions through three dimensional (3D)graphs. The numerical results show that our technique provides simple implementation, quick convergence, and outstanding accuracy for both linear and nonlinear models. This hybrid approach proves to be a highly effective and reliable tool for solving telegraph interface problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信