r动态着色与图中的谱半径

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Jiangdong Ai , Suil O. , Liwen Zhang
{"title":"r动态着色与图中的谱半径","authors":"Jiangdong Ai ,&nbsp;Suil O. ,&nbsp;Liwen Zhang","doi":"10.1016/j.dam.2025.05.003","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mrow><mi>χ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>ρ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> be the chromatic number and spectral radius of <span><math><mi>G</mi></math></span>, respectively. In 1967, Wilf proved that for a graph <span><math><mi>G</mi></math></span>, we have <span><math><mrow><mi>χ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>1</mn><mo>+</mo><mi>ρ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. An <span><math><mi>r</mi></math></span>-dynamic <span><math><mi>k</mi></math></span>-coloring of a graph <span><math><mi>G</mi></math></span> is a proper <span><math><mi>k</mi></math></span>-coloring of <span><math><mi>G</mi></math></span> such that every vertex <span><math><mi>v</mi></math></span> in <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> has neighbors in at least <span><math><mrow><mo>min</mo><mrow><mo>{</mo><mi>d</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>,</mo><mi>r</mi><mo>}</mo></mrow></mrow></math></span> different color classes. The <span><math><mi>r</mi></math></span>-dynamic chromatic number of a graph <span><math><mi>G</mi></math></span>, written <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is the least <span><math><mi>k</mi></math></span> such that <span><math><mi>G</mi></math></span> has such a <span><math><mi>k</mi></math></span>-coloring. Note that <span><math><mrow><mi>χ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>χ</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>1</mn><mo>+</mo><mi>r</mi><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> (*) (Jahanbekama et al., 2016). By the inequality (*), we observe that for a positive integer <span><math><mrow><mi>r</mi><mo>≥</mo><mn>2</mn></mrow></math></span> and a connected graph <span><math><mi>G</mi></math></span>, we have <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>1</mn><mo>+</mo><mi>r</mi><msup><mrow><mi>ρ</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>.</mo></mrow></math></span></div><div>In this paper, for a positive integer <span><math><mrow><mi>k</mi><mo>&gt;</mo><msup><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>, we provide graphs <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>r</mi></mrow></msub></math></span> with <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>r</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mi>Θ</mi><mrow><mo>(</mo><msup><mrow><mi>ρ</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>r</mi></mrow></msub><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> to show that the bound is almost sharp. When <span><math><mrow><mi>r</mi><mo>=</mo><mn>2</mn></mrow></math></span>, we prove that <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>1</mn><mo>+</mo><msup><mrow><mi>ρ</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>; equality holds only when <span><math><mrow><mi>G</mi><mo>=</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>,</mo></mrow></math></span> or <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span>. For <span><math><mrow><mi>r</mi><mo>=</mo><mn>3</mn></mrow></math></span> and <span><math><mrow><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>4</mn></mrow></math></span>, we prove that <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>10</mn></mrow></math></span>; equality holds when <span><math><mi>G</mi></math></span> is the Petersen graph. When <span><math><mrow><mi>r</mi><mo>=</mo><mn>3</mn></mrow></math></span> and <span><math><mrow><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><mn>5</mn></mrow></math></span>, we prove that <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>2</mn><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>+</mo><mn>1</mn></mrow></math></span>, which implies <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>1</mn><mo>+</mo><mn>2</mn><msup><mrow><mi>ρ</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. The graph <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>k</mi><mo>,</mo><mn>3</mn></mrow></msub></math></span> guarantees that <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mn>3</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>2</mn><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>+</mo><mn>1</mn></mrow></math></span> is sharp.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"373 ","pages":"Pages 249-255"},"PeriodicalIF":1.0000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"r-dynamic colorings and the spectral radius in graphs\",\"authors\":\"Jiangdong Ai ,&nbsp;Suil O. ,&nbsp;Liwen Zhang\",\"doi\":\"10.1016/j.dam.2025.05.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mrow><mi>χ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>ρ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> be the chromatic number and spectral radius of <span><math><mi>G</mi></math></span>, respectively. In 1967, Wilf proved that for a graph <span><math><mi>G</mi></math></span>, we have <span><math><mrow><mi>χ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>1</mn><mo>+</mo><mi>ρ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. An <span><math><mi>r</mi></math></span>-dynamic <span><math><mi>k</mi></math></span>-coloring of a graph <span><math><mi>G</mi></math></span> is a proper <span><math><mi>k</mi></math></span>-coloring of <span><math><mi>G</mi></math></span> such that every vertex <span><math><mi>v</mi></math></span> in <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> has neighbors in at least <span><math><mrow><mo>min</mo><mrow><mo>{</mo><mi>d</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>,</mo><mi>r</mi><mo>}</mo></mrow></mrow></math></span> different color classes. The <span><math><mi>r</mi></math></span>-dynamic chromatic number of a graph <span><math><mi>G</mi></math></span>, written <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is the least <span><math><mi>k</mi></math></span> such that <span><math><mi>G</mi></math></span> has such a <span><math><mi>k</mi></math></span>-coloring. Note that <span><math><mrow><mi>χ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>χ</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>1</mn><mo>+</mo><mi>r</mi><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> (*) (Jahanbekama et al., 2016). By the inequality (*), we observe that for a positive integer <span><math><mrow><mi>r</mi><mo>≥</mo><mn>2</mn></mrow></math></span> and a connected graph <span><math><mi>G</mi></math></span>, we have <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>1</mn><mo>+</mo><mi>r</mi><msup><mrow><mi>ρ</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>.</mo></mrow></math></span></div><div>In this paper, for a positive integer <span><math><mrow><mi>k</mi><mo>&gt;</mo><msup><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>, we provide graphs <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>r</mi></mrow></msub></math></span> with <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>r</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mi>Θ</mi><mrow><mo>(</mo><msup><mrow><mi>ρ</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>r</mi></mrow></msub><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> to show that the bound is almost sharp. When <span><math><mrow><mi>r</mi><mo>=</mo><mn>2</mn></mrow></math></span>, we prove that <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>1</mn><mo>+</mo><msup><mrow><mi>ρ</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>; equality holds only when <span><math><mrow><mi>G</mi><mo>=</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>,</mo></mrow></math></span> or <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span>. For <span><math><mrow><mi>r</mi><mo>=</mo><mn>3</mn></mrow></math></span> and <span><math><mrow><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>4</mn></mrow></math></span>, we prove that <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>10</mn></mrow></math></span>; equality holds when <span><math><mi>G</mi></math></span> is the Petersen graph. When <span><math><mrow><mi>r</mi><mo>=</mo><mn>3</mn></mrow></math></span> and <span><math><mrow><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><mn>5</mn></mrow></math></span>, we prove that <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>2</mn><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>+</mo><mn>1</mn></mrow></math></span>, which implies <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>1</mn><mo>+</mo><mn>2</mn><msup><mrow><mi>ρ</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. The graph <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>k</mi><mo>,</mo><mn>3</mn></mrow></msub></math></span> guarantees that <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mn>3</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>2</mn><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>+</mo><mn>1</mn></mrow></math></span> is sharp.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"373 \",\"pages\":\"Pages 249-255\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25002458\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25002458","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

设χ(G)和ρ(G)分别为G的色数和谱半径。1967年,Wilf证明了对于图G,我们有χ(G)≤1+ρ(G)。图G的r-动态k-着色是G的适当k-着色,使得v (G)中的每个顶点v在至少min{d(v),r}个不同颜色类中有邻居。图G的r-动态色数,写成χr(G),是使G具有k-着色的最小k。注意,χ(G) = 1 (G)和χχr (G)≤1 + rΔ(G) (*) (Jahanbekama et al ., 2016)。由不等式(*)可知,对于正整数r≥2,连通图G,有χr(G)≤1+rρ2(G)。对于正整数k>;r2,我们给出了χr(Hk,r)=Θ(ρ2(Hk,r))的图Hk,r,证明了其界是近似锐化的。当r=2时,证明χr(G)≤1+ρ2(G);只有当G=P1、P2、P3或C5时,等式成立。当r=3且Δ(G)≤4时,证明χr(G)≤10;当G是Petersen图时,等式成立。当r = 3和Δ(G)≥5,我们证明χr (G)≤2Δ(G) + 1,这意味着χr (G)≤1 + 2ρ2 (G)。图Hk,3保证χ3(G)≤2Δ(G)+1是尖锐的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
r-dynamic colorings and the spectral radius in graphs
Let χ(G) and ρ(G) be the chromatic number and spectral radius of G, respectively. In 1967, Wilf proved that for a graph G, we have χ(G)1+ρ(G). An r-dynamic k-coloring of a graph G is a proper k-coloring of G such that every vertex v in V(G) has neighbors in at least min{d(v),r} different color classes. The r-dynamic chromatic number of a graph G, written χr(G), is the least k such that G has such a k-coloring. Note that χ(G)=χ1(G) and χr(G)1+rΔ(G) (*) (Jahanbekama et al., 2016). By the inequality (*), we observe that for a positive integer r2 and a connected graph G, we have χr(G)1+rρ2(G).
In this paper, for a positive integer k>r2, we provide graphs Hk,r with χr(Hk,r)=Θ(ρ2(Hk,r)) to show that the bound is almost sharp. When r=2, we prove that χr(G)1+ρ2(G); equality holds only when G=P1,P2,P3, or C5. For r=3 and Δ(G)4, we prove that χr(G)10; equality holds when G is the Petersen graph. When r=3 and Δ(G)5, we prove that χr(G)2Δ(G)+1, which implies χr(G)1+2ρ2(G). The graph Hk,3 guarantees that χ3(G)2Δ(G)+1 is sharp.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信