有限Gorenstein弱整体维环上的同伦等价和Grothendieck对偶

IF 0.8 2区 数学 Q2 MATHEMATICS
Junpeng Wang , Sergio Estrada
{"title":"有限Gorenstein弱整体维环上的同伦等价和Grothendieck对偶","authors":"Junpeng Wang ,&nbsp;Sergio Estrada","doi":"10.1016/j.jalgebra.2025.04.033","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>R</em> be a ring with Gwgldim<span><math><mo>(</mo><mi>R</mi><mo>)</mo><mo>&lt;</mo><mo>∞</mo></math></span>. We obtain a triangle-equivalence <span><math><mtext>K</mtext><mo>(</mo><mi>R</mi><mtext>-</mtext><mtext>GProj</mtext><mo>)</mo><mo>≃</mo><mtext>K</mtext><mo>(</mo><mi>R</mi><mtext>-</mtext><mtext>GInj</mtext><mo>)</mo></math></span> which restricts to a triangle-equivalence <span><math><mtext>K</mtext><mo>(</mo><mi>R</mi><mtext>-</mtext><mtext>Proj</mtext><mo>)</mo></math></span> <span><math><mo>≃</mo><mtext>K</mtext><mo>(</mo><mi>R</mi><mtext>-</mtext><mtext>Inj</mtext><mo>)</mo></math></span>. This class of rings includes, among others, (left) Gorenstein rings, Ding–Chen rings and the more general Gorenstein <em>n</em>-coherent rings (<span><math><mi>n</mi><mo>∈</mo><mi>N</mi><mo>∪</mo><mo>{</mo><mo>∞</mo><mo>}</mo><mo>,</mo><mi>n</mi><mo>≥</mo><mn>2</mn></math></span>). As application, we establish some triangle-equivalences of Grothendieck duality over Ding–Chen rings and Gorenstein <em>n</em>-coherent rings.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"678 ","pages":"Pages 769-808"},"PeriodicalIF":0.8000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homotopy equivalences and Grothendieck duality over rings with finite Gorenstein weak global dimension\",\"authors\":\"Junpeng Wang ,&nbsp;Sergio Estrada\",\"doi\":\"10.1016/j.jalgebra.2025.04.033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>R</em> be a ring with Gwgldim<span><math><mo>(</mo><mi>R</mi><mo>)</mo><mo>&lt;</mo><mo>∞</mo></math></span>. We obtain a triangle-equivalence <span><math><mtext>K</mtext><mo>(</mo><mi>R</mi><mtext>-</mtext><mtext>GProj</mtext><mo>)</mo><mo>≃</mo><mtext>K</mtext><mo>(</mo><mi>R</mi><mtext>-</mtext><mtext>GInj</mtext><mo>)</mo></math></span> which restricts to a triangle-equivalence <span><math><mtext>K</mtext><mo>(</mo><mi>R</mi><mtext>-</mtext><mtext>Proj</mtext><mo>)</mo></math></span> <span><math><mo>≃</mo><mtext>K</mtext><mo>(</mo><mi>R</mi><mtext>-</mtext><mtext>Inj</mtext><mo>)</mo></math></span>. This class of rings includes, among others, (left) Gorenstein rings, Ding–Chen rings and the more general Gorenstein <em>n</em>-coherent rings (<span><math><mi>n</mi><mo>∈</mo><mi>N</mi><mo>∪</mo><mo>{</mo><mo>∞</mo><mo>}</mo><mo>,</mo><mi>n</mi><mo>≥</mo><mn>2</mn></math></span>). As application, we establish some triangle-equivalences of Grothendieck duality over Ding–Chen rings and Gorenstein <em>n</em>-coherent rings.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"678 \",\"pages\":\"Pages 769-808\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869325002613\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325002613","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设R为具有Gwgldim(R)<;∞的环。我们得到了一个三角等价K(R-GProj)≃K(R-GInj),该三角等价K(R-Proj)限制为一个三角等价K(R-Inj)。这类环包括(左)Gorenstein环、Ding-Chen环和更一般的Gorenstein n-相干环(n∈n∪{∞},n≥2)。作为应用,我们在Ding-Chen环和Gorenstein n-相干环上建立了Grothendieck对偶的一些三角等价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Homotopy equivalences and Grothendieck duality over rings with finite Gorenstein weak global dimension
Let R be a ring with Gwgldim(R)<. We obtain a triangle-equivalence K(R-GProj)K(R-GInj) which restricts to a triangle-equivalence K(R-Proj) K(R-Inj). This class of rings includes, among others, (left) Gorenstein rings, Ding–Chen rings and the more general Gorenstein n-coherent rings (nN{},n2). As application, we establish some triangle-equivalences of Grothendieck duality over Ding–Chen rings and Gorenstein n-coherent rings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信