{"title":"有限Gorenstein弱整体维环上的同伦等价和Grothendieck对偶","authors":"Junpeng Wang , Sergio Estrada","doi":"10.1016/j.jalgebra.2025.04.033","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>R</em> be a ring with Gwgldim<span><math><mo>(</mo><mi>R</mi><mo>)</mo><mo><</mo><mo>∞</mo></math></span>. We obtain a triangle-equivalence <span><math><mtext>K</mtext><mo>(</mo><mi>R</mi><mtext>-</mtext><mtext>GProj</mtext><mo>)</mo><mo>≃</mo><mtext>K</mtext><mo>(</mo><mi>R</mi><mtext>-</mtext><mtext>GInj</mtext><mo>)</mo></math></span> which restricts to a triangle-equivalence <span><math><mtext>K</mtext><mo>(</mo><mi>R</mi><mtext>-</mtext><mtext>Proj</mtext><mo>)</mo></math></span> <span><math><mo>≃</mo><mtext>K</mtext><mo>(</mo><mi>R</mi><mtext>-</mtext><mtext>Inj</mtext><mo>)</mo></math></span>. This class of rings includes, among others, (left) Gorenstein rings, Ding–Chen rings and the more general Gorenstein <em>n</em>-coherent rings (<span><math><mi>n</mi><mo>∈</mo><mi>N</mi><mo>∪</mo><mo>{</mo><mo>∞</mo><mo>}</mo><mo>,</mo><mi>n</mi><mo>≥</mo><mn>2</mn></math></span>). As application, we establish some triangle-equivalences of Grothendieck duality over Ding–Chen rings and Gorenstein <em>n</em>-coherent rings.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"678 ","pages":"Pages 769-808"},"PeriodicalIF":0.8000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homotopy equivalences and Grothendieck duality over rings with finite Gorenstein weak global dimension\",\"authors\":\"Junpeng Wang , Sergio Estrada\",\"doi\":\"10.1016/j.jalgebra.2025.04.033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>R</em> be a ring with Gwgldim<span><math><mo>(</mo><mi>R</mi><mo>)</mo><mo><</mo><mo>∞</mo></math></span>. We obtain a triangle-equivalence <span><math><mtext>K</mtext><mo>(</mo><mi>R</mi><mtext>-</mtext><mtext>GProj</mtext><mo>)</mo><mo>≃</mo><mtext>K</mtext><mo>(</mo><mi>R</mi><mtext>-</mtext><mtext>GInj</mtext><mo>)</mo></math></span> which restricts to a triangle-equivalence <span><math><mtext>K</mtext><mo>(</mo><mi>R</mi><mtext>-</mtext><mtext>Proj</mtext><mo>)</mo></math></span> <span><math><mo>≃</mo><mtext>K</mtext><mo>(</mo><mi>R</mi><mtext>-</mtext><mtext>Inj</mtext><mo>)</mo></math></span>. This class of rings includes, among others, (left) Gorenstein rings, Ding–Chen rings and the more general Gorenstein <em>n</em>-coherent rings (<span><math><mi>n</mi><mo>∈</mo><mi>N</mi><mo>∪</mo><mo>{</mo><mo>∞</mo><mo>}</mo><mo>,</mo><mi>n</mi><mo>≥</mo><mn>2</mn></math></span>). As application, we establish some triangle-equivalences of Grothendieck duality over Ding–Chen rings and Gorenstein <em>n</em>-coherent rings.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"678 \",\"pages\":\"Pages 769-808\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869325002613\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325002613","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Homotopy equivalences and Grothendieck duality over rings with finite Gorenstein weak global dimension
Let R be a ring with Gwgldim. We obtain a triangle-equivalence which restricts to a triangle-equivalence . This class of rings includes, among others, (left) Gorenstein rings, Ding–Chen rings and the more general Gorenstein n-coherent rings (). As application, we establish some triangle-equivalences of Grothendieck duality over Ding–Chen rings and Gorenstein n-coherent rings.
期刊介绍:
The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.