Abdullah Guvendi , Omar Mustafa , Nosratollah Jafari
{"title":"荷电狄拉克振荡器上的薄荷-茶树DSR效应:调制自旋磁涡","authors":"Abdullah Guvendi , Omar Mustafa , Nosratollah Jafari","doi":"10.1016/j.physletb.2025.139547","DOIUrl":null,"url":null,"abstract":"<div><div>This work explores the two-dimensional Dirac oscillator (DO) within the framework of Amelino-Camelia doubly special relativity (DSR), employing a modified Dirac equation that preserves the first-order nature of the relativistic wave equation. By introducing non-minimal couplings, the system provides an exact analytical solution in terms of confluent hypergeometric functions, along with closed-form expressions for the energy spectrum (indulging a Landau-like signature along with accidental spin-degeneracies)-. In the low-energy limit, the results reproduce the well-known two-dimensional Dirac oscillator spectrum, and in the nonrelativistic regime, the results reduce the Schrödinger oscillator spectrum. First-order corrections in this DSR model introduce a mass-splitting term proportional to <span><math><mo>±</mo><msub><mrow><mi>E</mi></mrow><mrow><mo>∘</mo></mrow></msub><mo>/</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>, where <span><math><msub><mrow><mi>E</mi></mrow><mrow><mo>∘</mo></mrow></msub><mo>=</mo><mi>m</mi><msup><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> is the rest energy and <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> is the Planck energy. These corrections preserve the symmetry between the energies of particles and antiparticles around zero energy, but induce a shift in the energy levels that becomes more significant for higher excited states (<span><math><mi>n</mi><mo>></mo><mn>0</mn></math></span>). By mapping the system to a DSR-deformed charged Dirac oscillator in the presence of an out-of-plane uniform magnetic field, we show that the leading-order Planck-scale corrections vanish at a critical magnetic field <span><math><msubsup><mrow><mi>B</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>c</mi></mrow></msubsup></math></span>, and as the magnetic field approaches this critical value, the relativistic energy levels approach <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>n</mi><mo>,</mo><mo>±</mo></mrow></msub><mo>=</mo><mo>±</mo><msub><mrow><mi>E</mi></mrow><mrow><mo>∘</mo></mrow></msub></math></span>. Finally, we identify a previously undetermined feature in two-dimensional charged Dirac oscillator systems in a magnetic field, revealing that the corresponding modes manifest as spinning magnetic vortices.</div></div>","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":"866 ","pages":"Article 139547"},"PeriodicalIF":4.3000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Amelino-Camelia DSR effects on charged Dirac oscillators: Modulated spinning magnetic vortices\",\"authors\":\"Abdullah Guvendi , Omar Mustafa , Nosratollah Jafari\",\"doi\":\"10.1016/j.physletb.2025.139547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work explores the two-dimensional Dirac oscillator (DO) within the framework of Amelino-Camelia doubly special relativity (DSR), employing a modified Dirac equation that preserves the first-order nature of the relativistic wave equation. By introducing non-minimal couplings, the system provides an exact analytical solution in terms of confluent hypergeometric functions, along with closed-form expressions for the energy spectrum (indulging a Landau-like signature along with accidental spin-degeneracies)-. In the low-energy limit, the results reproduce the well-known two-dimensional Dirac oscillator spectrum, and in the nonrelativistic regime, the results reduce the Schrödinger oscillator spectrum. First-order corrections in this DSR model introduce a mass-splitting term proportional to <span><math><mo>±</mo><msub><mrow><mi>E</mi></mrow><mrow><mo>∘</mo></mrow></msub><mo>/</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>, where <span><math><msub><mrow><mi>E</mi></mrow><mrow><mo>∘</mo></mrow></msub><mo>=</mo><mi>m</mi><msup><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> is the rest energy and <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> is the Planck energy. These corrections preserve the symmetry between the energies of particles and antiparticles around zero energy, but induce a shift in the energy levels that becomes more significant for higher excited states (<span><math><mi>n</mi><mo>></mo><mn>0</mn></math></span>). By mapping the system to a DSR-deformed charged Dirac oscillator in the presence of an out-of-plane uniform magnetic field, we show that the leading-order Planck-scale corrections vanish at a critical magnetic field <span><math><msubsup><mrow><mi>B</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>c</mi></mrow></msubsup></math></span>, and as the magnetic field approaches this critical value, the relativistic energy levels approach <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>n</mi><mo>,</mo><mo>±</mo></mrow></msub><mo>=</mo><mo>±</mo><msub><mrow><mi>E</mi></mrow><mrow><mo>∘</mo></mrow></msub></math></span>. Finally, we identify a previously undetermined feature in two-dimensional charged Dirac oscillator systems in a magnetic field, revealing that the corresponding modes manifest as spinning magnetic vortices.</div></div>\",\"PeriodicalId\":20162,\"journal\":{\"name\":\"Physics Letters B\",\"volume\":\"866 \",\"pages\":\"Article 139547\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics Letters B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0370269325003089\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Letters B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0370269325003089","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Amelino-Camelia DSR effects on charged Dirac oscillators: Modulated spinning magnetic vortices
This work explores the two-dimensional Dirac oscillator (DO) within the framework of Amelino-Camelia doubly special relativity (DSR), employing a modified Dirac equation that preserves the first-order nature of the relativistic wave equation. By introducing non-minimal couplings, the system provides an exact analytical solution in terms of confluent hypergeometric functions, along with closed-form expressions for the energy spectrum (indulging a Landau-like signature along with accidental spin-degeneracies)-. In the low-energy limit, the results reproduce the well-known two-dimensional Dirac oscillator spectrum, and in the nonrelativistic regime, the results reduce the Schrödinger oscillator spectrum. First-order corrections in this DSR model introduce a mass-splitting term proportional to , where is the rest energy and is the Planck energy. These corrections preserve the symmetry between the energies of particles and antiparticles around zero energy, but induce a shift in the energy levels that becomes more significant for higher excited states (). By mapping the system to a DSR-deformed charged Dirac oscillator in the presence of an out-of-plane uniform magnetic field, we show that the leading-order Planck-scale corrections vanish at a critical magnetic field , and as the magnetic field approaches this critical value, the relativistic energy levels approach . Finally, we identify a previously undetermined feature in two-dimensional charged Dirac oscillator systems in a magnetic field, revealing that the corresponding modes manifest as spinning magnetic vortices.
期刊介绍:
Physics Letters B ensures the rapid publication of important new results in particle physics, nuclear physics and cosmology. Specialized editors are responsible for contributions in experimental nuclear physics, theoretical nuclear physics, experimental high-energy physics, theoretical high-energy physics, and astrophysics.