量子角对称:表示和粘合

IF 4.3 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Luca Ciambelli , Jerzy Kowalski-Glikman , Ludovic Varrin
{"title":"量子角对称:表示和粘合","authors":"Luca Ciambelli ,&nbsp;Jerzy Kowalski-Glikman ,&nbsp;Ludovic Varrin","doi":"10.1016/j.physletb.2025.139544","DOIUrl":null,"url":null,"abstract":"<div><div>The corner symmetry algebra organizes the physical charges induced by gravity on codimension-2 corners of a manifold. In this letter, we initiate a study of the quantum properties of this group using as a toy model the corner symmetry group of two-dimensional gravity <span><math><mrow><mi>SL</mi></mrow><mo>(</mo><mn>2</mn><mo>,</mo><mi>R</mi><mo>)</mo><mo>⋉</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. We first describe the central extensions and how the quantum corner symmetry group arises and give the Casimirs. We then make use of one particular representation to discuss the gluing of corners, achieved by identifying the maximal commuting sub-algebra. This is a concrete implementation of the gravitational constraints at the quantum level.</div></div>","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":"866 ","pages":"Article 139544"},"PeriodicalIF":4.3000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum corner symmetry: Representations and gluing\",\"authors\":\"Luca Ciambelli ,&nbsp;Jerzy Kowalski-Glikman ,&nbsp;Ludovic Varrin\",\"doi\":\"10.1016/j.physletb.2025.139544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The corner symmetry algebra organizes the physical charges induced by gravity on codimension-2 corners of a manifold. In this letter, we initiate a study of the quantum properties of this group using as a toy model the corner symmetry group of two-dimensional gravity <span><math><mrow><mi>SL</mi></mrow><mo>(</mo><mn>2</mn><mo>,</mo><mi>R</mi><mo>)</mo><mo>⋉</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. We first describe the central extensions and how the quantum corner symmetry group arises and give the Casimirs. We then make use of one particular representation to discuss the gluing of corners, achieved by identifying the maximal commuting sub-algebra. This is a concrete implementation of the gravitational constraints at the quantum level.</div></div>\",\"PeriodicalId\":20162,\"journal\":{\"name\":\"Physics Letters B\",\"volume\":\"866 \",\"pages\":\"Article 139544\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics Letters B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0370269325003053\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Letters B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0370269325003053","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

角对称代数组织了由重力引起的流形余维2角上的物理电荷。在这封信中,我们使用二维引力的角对称群SL(2,R) R2作为一个玩具模型,开始研究这个群的量子性质。我们首先描述了中心扩展和量子角对称群是如何产生的,并给出了卡西米尔。然后,我们利用一个特殊的表示来讨论角的粘接,通过识别最大交换子代数来实现。这是引力约束在量子水平上的具体实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum corner symmetry: Representations and gluing
The corner symmetry algebra organizes the physical charges induced by gravity on codimension-2 corners of a manifold. In this letter, we initiate a study of the quantum properties of this group using as a toy model the corner symmetry group of two-dimensional gravity SL(2,R)R2. We first describe the central extensions and how the quantum corner symmetry group arises and give the Casimirs. We then make use of one particular representation to discuss the gluing of corners, achieved by identifying the maximal commuting sub-algebra. This is a concrete implementation of the gravitational constraints at the quantum level.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics Letters B
Physics Letters B 物理-物理:综合
CiteScore
9.10
自引率
6.80%
发文量
647
审稿时长
3 months
期刊介绍: Physics Letters B ensures the rapid publication of important new results in particle physics, nuclear physics and cosmology. Specialized editors are responsible for contributions in experimental nuclear physics, theoretical nuclear physics, experimental high-energy physics, theoretical high-energy physics, and astrophysics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信