Zhenhui Lv , Jianan Li , Tao Yang , Yibao Li , Chong Peng
{"title":"碳改性对加氢催化剂性能的影响","authors":"Zhenhui Lv , Jianan Li , Tao Yang , Yibao Li , Chong Peng","doi":"10.1016/j.cjche.2024.12.025","DOIUrl":null,"url":null,"abstract":"<div><div>In the petroleum industry, the properties of catalysts play a crucial role in the performance of hydroprocessing reactions. Carbon modification can effectively regulate the physicochemical properties of catalysts, but further in-depth research is necessary. In this study, ethylene glycol was used as the carbon source to investigate the impact of varying carbon amounts on the performance of the Mo-Ni/Al<sub>2</sub>O<sub>3</sub> hydrogenation catalyst. The results showed that both the pore structure and surface hydroxyl groups of catalysts can be adjusted after carbon modification. As the carbon content increased, the surface acidity of catalysts gradually decreased, and the interaction between carrier and active metal gradually weakened, leading to more octahedral coordination in form of polynuclear polymolybdic acid. The dispersion and sulfidation degree of Mo species improved, ultimately resulting in more hydrogenation active phases. Consequently, the catalyst exhibited enhanced hydrodesulfurization (HDS) and hydrodenitrification (HDN) activities.</div></div>","PeriodicalId":9966,"journal":{"name":"Chinese Journal of Chemical Engineering","volume":"81 ","pages":"Pages 270-276"},"PeriodicalIF":3.7000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of carbon modifications on the performance of hydrogenation catalysts\",\"authors\":\"Zhenhui Lv , Jianan Li , Tao Yang , Yibao Li , Chong Peng\",\"doi\":\"10.1016/j.cjche.2024.12.025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the petroleum industry, the properties of catalysts play a crucial role in the performance of hydroprocessing reactions. Carbon modification can effectively regulate the physicochemical properties of catalysts, but further in-depth research is necessary. In this study, ethylene glycol was used as the carbon source to investigate the impact of varying carbon amounts on the performance of the Mo-Ni/Al<sub>2</sub>O<sub>3</sub> hydrogenation catalyst. The results showed that both the pore structure and surface hydroxyl groups of catalysts can be adjusted after carbon modification. As the carbon content increased, the surface acidity of catalysts gradually decreased, and the interaction between carrier and active metal gradually weakened, leading to more octahedral coordination in form of polynuclear polymolybdic acid. The dispersion and sulfidation degree of Mo species improved, ultimately resulting in more hydrogenation active phases. Consequently, the catalyst exhibited enhanced hydrodesulfurization (HDS) and hydrodenitrification (HDN) activities.</div></div>\",\"PeriodicalId\":9966,\"journal\":{\"name\":\"Chinese Journal of Chemical Engineering\",\"volume\":\"81 \",\"pages\":\"Pages 270-276\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1004954125001107\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1004954125001107","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Effect of carbon modifications on the performance of hydrogenation catalysts
In the petroleum industry, the properties of catalysts play a crucial role in the performance of hydroprocessing reactions. Carbon modification can effectively regulate the physicochemical properties of catalysts, but further in-depth research is necessary. In this study, ethylene glycol was used as the carbon source to investigate the impact of varying carbon amounts on the performance of the Mo-Ni/Al2O3 hydrogenation catalyst. The results showed that both the pore structure and surface hydroxyl groups of catalysts can be adjusted after carbon modification. As the carbon content increased, the surface acidity of catalysts gradually decreased, and the interaction between carrier and active metal gradually weakened, leading to more octahedral coordination in form of polynuclear polymolybdic acid. The dispersion and sulfidation degree of Mo species improved, ultimately resulting in more hydrogenation active phases. Consequently, the catalyst exhibited enhanced hydrodesulfurization (HDS) and hydrodenitrification (HDN) activities.
期刊介绍:
The Chinese Journal of Chemical Engineering (Monthly, started in 1982) is the official journal of the Chemical Industry and Engineering Society of China and published by the Chemical Industry Press Co. Ltd. The aim of the journal is to develop the international exchange of scientific and technical information in the field of chemical engineering. It publishes original research papers that cover the major advancements and achievements in chemical engineering in China as well as some articles from overseas contributors.
The topics of journal include chemical engineering, chemical technology, biochemical engineering, energy and environmental engineering and other relevant fields. Papers are published on the basis of their relevance to theoretical research, practical application or potential uses in the industry as Research Papers, Communications, Reviews and Perspectives. Prominent domestic and overseas chemical experts and scholars have been invited to form an International Advisory Board and the Editorial Committee. It enjoys recognition among Chinese academia and industry as a reliable source of information of what is going on in chemical engineering research, both domestic and abroad.