Xinya Zhao , Jiangwei Zan , Zhaohui Sun , Xiangping Xue , Hai Ren , Huiru Fu , Fei Si , Xiaomin Jin
{"title":"阴离子聚丙烯酰胺对褪黑米蛾胚胎和幼虫发育阶段的毒性影响","authors":"Xinya Zhao , Jiangwei Zan , Zhaohui Sun , Xiangping Xue , Hai Ren , Huiru Fu , Fei Si , Xiaomin Jin","doi":"10.1016/j.aquatox.2025.107402","DOIUrl":null,"url":null,"abstract":"<div><div>Anionic Polyacrylamide (APAM) is widely used in oil extraction processes, serving as an oil-repellent polymer and constituting a critical component of water-based drilling fluids. The environmental and ecological effects of APAM on fishery resources have attracted significant attention, yet its toxic mechanism in marine fish at early developmental stages remains poorly understood. The potential effects of APAM on marine medaka (<em>Oryzias melastigma</em>) embryos were investigated by exposing them to 0, 120, 240, 480, and 960 mg/L for 18 d. APAM exposure caused developmental toxicity in embryos, leading to reduced heart rates, delayed and decreased hatching, increased mortality and malformations. The activities of superoxide dismutase (SOD) and catalase (CAT) initially increased after 2 d of exposure but decreased after 8 and 18 days of prolonged stress, while malondialdehyde (MDA) concentration increased, causing lipid peroxidation and worsening oxidative damage. After 18 days of APAM exposure, low and medium concentrations increased the expression of cardiovascular genes GATA4 and NKX2.5, while high concentrations decreased NKX2.5, leading to heart defects like elongated hearts and pericardial cysts. Additionally, low concentrations significantly boosted nervous system genes SHHA and SYN2A, enhancing swimming behaviors, whereas high concentrations suppressed these genes, reducing swimming activity. In conclusion, this study demonstrated that APAM exposure causes developmental toxicity, oxidative stress, neurotoxicity, and disrupts early cardiac development in <em>O. melastigma</em> embryos, providing insight into its toxic effects on early marine fish development.</div></div>","PeriodicalId":248,"journal":{"name":"Aquatic Toxicology","volume":"284 ","pages":"Article 107402"},"PeriodicalIF":4.1000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toxic effects of anionic polyacrylamide on the developmental stages of Oryzias melastigma embryos and larvae\",\"authors\":\"Xinya Zhao , Jiangwei Zan , Zhaohui Sun , Xiangping Xue , Hai Ren , Huiru Fu , Fei Si , Xiaomin Jin\",\"doi\":\"10.1016/j.aquatox.2025.107402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Anionic Polyacrylamide (APAM) is widely used in oil extraction processes, serving as an oil-repellent polymer and constituting a critical component of water-based drilling fluids. The environmental and ecological effects of APAM on fishery resources have attracted significant attention, yet its toxic mechanism in marine fish at early developmental stages remains poorly understood. The potential effects of APAM on marine medaka (<em>Oryzias melastigma</em>) embryos were investigated by exposing them to 0, 120, 240, 480, and 960 mg/L for 18 d. APAM exposure caused developmental toxicity in embryos, leading to reduced heart rates, delayed and decreased hatching, increased mortality and malformations. The activities of superoxide dismutase (SOD) and catalase (CAT) initially increased after 2 d of exposure but decreased after 8 and 18 days of prolonged stress, while malondialdehyde (MDA) concentration increased, causing lipid peroxidation and worsening oxidative damage. After 18 days of APAM exposure, low and medium concentrations increased the expression of cardiovascular genes GATA4 and NKX2.5, while high concentrations decreased NKX2.5, leading to heart defects like elongated hearts and pericardial cysts. Additionally, low concentrations significantly boosted nervous system genes SHHA and SYN2A, enhancing swimming behaviors, whereas high concentrations suppressed these genes, reducing swimming activity. In conclusion, this study demonstrated that APAM exposure causes developmental toxicity, oxidative stress, neurotoxicity, and disrupts early cardiac development in <em>O. melastigma</em> embryos, providing insight into its toxic effects on early marine fish development.</div></div>\",\"PeriodicalId\":248,\"journal\":{\"name\":\"Aquatic Toxicology\",\"volume\":\"284 \",\"pages\":\"Article 107402\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquatic Toxicology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166445X25001675\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Toxicology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166445X25001675","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
Toxic effects of anionic polyacrylamide on the developmental stages of Oryzias melastigma embryos and larvae
Anionic Polyacrylamide (APAM) is widely used in oil extraction processes, serving as an oil-repellent polymer and constituting a critical component of water-based drilling fluids. The environmental and ecological effects of APAM on fishery resources have attracted significant attention, yet its toxic mechanism in marine fish at early developmental stages remains poorly understood. The potential effects of APAM on marine medaka (Oryzias melastigma) embryos were investigated by exposing them to 0, 120, 240, 480, and 960 mg/L for 18 d. APAM exposure caused developmental toxicity in embryos, leading to reduced heart rates, delayed and decreased hatching, increased mortality and malformations. The activities of superoxide dismutase (SOD) and catalase (CAT) initially increased after 2 d of exposure but decreased after 8 and 18 days of prolonged stress, while malondialdehyde (MDA) concentration increased, causing lipid peroxidation and worsening oxidative damage. After 18 days of APAM exposure, low and medium concentrations increased the expression of cardiovascular genes GATA4 and NKX2.5, while high concentrations decreased NKX2.5, leading to heart defects like elongated hearts and pericardial cysts. Additionally, low concentrations significantly boosted nervous system genes SHHA and SYN2A, enhancing swimming behaviors, whereas high concentrations suppressed these genes, reducing swimming activity. In conclusion, this study demonstrated that APAM exposure causes developmental toxicity, oxidative stress, neurotoxicity, and disrupts early cardiac development in O. melastigma embryos, providing insight into its toxic effects on early marine fish development.
期刊介绍:
Aquatic Toxicology publishes significant contributions that increase the understanding of the impact of harmful substances (including natural and synthetic chemicals) on aquatic organisms and ecosystems.
Aquatic Toxicology considers both laboratory and field studies with a focus on marine/ freshwater environments. We strive to attract high quality original scientific papers, critical reviews and expert opinion papers in the following areas: Effects of harmful substances on molecular, cellular, sub-organismal, organismal, population, community, and ecosystem level; Toxic Mechanisms; Genetic disturbances, transgenerational effects, behavioral and adaptive responses; Impacts of harmful substances on structure, function of and services provided by aquatic ecosystems; Mixture toxicity assessment; Statistical approaches to predict exposure to and hazards of contaminants
The journal also considers manuscripts in other areas, such as the development of innovative concepts, approaches, and methodologies, which promote the wider application of toxicological datasets to the protection of aquatic environments and inform ecological risk assessments and decision making by relevant authorities.