地球上的外星尘埃增加率在圆顶C,南极洲:一个新的面貌与3He

IF 4.8 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
G. Fénisse , D.V. Bekaert , P.-H. Blard , J. Duprat , I. Mattia , M. Genge , M.D. Suttle , O. Barres , C. Engrand , Y. Marrocchi
{"title":"地球上的外星尘埃增加率在圆顶C,南极洲:一个新的面貌与3He","authors":"G. Fénisse ,&nbsp;D.V. Bekaert ,&nbsp;P.-H. Blard ,&nbsp;J. Duprat ,&nbsp;I. Mattia ,&nbsp;M. Genge ,&nbsp;M.D. Suttle ,&nbsp;O. Barres ,&nbsp;C. Engrand ,&nbsp;Y. Marrocchi","doi":"10.1016/j.epsl.2025.119396","DOIUrl":null,"url":null,"abstract":"<div><div>Interplanetary dust particles (IDPs) and micrometeorites (MMs), from 1 µm to 5 mm, are the primary source of extraterrestrial (ET) material currently accreted on Earth. The flux of ET particles smaller than ∼50 µm is typically determined through optical counting, but it remains uncertain and may deviate from predictions made by numerical simulations. The volatile element content carried by this flux is still not well-constrained and is influenced by the potential effects of atmospheric heating.</div><div>We developed a clean, pressurized system to extract cosmic dust from ∼38 kg of clean snow collected near the Concordia station (Dome C, Antarctica). We measured helium isotope concentrations in various granulometric fractions (&gt; 62 µm, 25–62 µm, 5–25 µm and &lt; 5 µm). The inferred global <sup>3</sup>He<sub>ET</sub> annual flux is (1.25±0.03) × 10⁻¹² ccSTP·cm⁻²·ka⁻¹ (weighted mean±1SD), consistent with previous <sup>3</sup>He<sub>ET</sub> flux estimates from marine sediments and polar samples. Our data shows that the majority of the <sup>3</sup>He<sub>ET</sub> flux (70 %) is carried by particles in the 5–25 µm size range, with 20 % attributed to the 25–62 µm fraction. Using an empirical relationship between <sup>3</sup>He<sub>ET</sub> concentrations and cosmic particle mass, we convert these fluxes into a global ET mass flux for particle diameters &lt; 100 µm of (3.5±0.5) kilotons·a⁻¹ (weighted mean±1SD). This result is about 3 times higher than collection estimates from (Rojas et al., 2021) and aligns with CABMOD-ZoDy modeling, after atmospheric entry (Carrillo-Sánchez et al., 2020). This <sup>3</sup>He<sub>ET</sub> method is suited for detecting particles smaller than 100 µm, while collection results are more relevant for larger fractions.</div></div>","PeriodicalId":11481,"journal":{"name":"Earth and Planetary Science Letters","volume":"663 ","pages":"Article 119396"},"PeriodicalIF":4.8000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The extraterrestrial dust accretion rate on Earth at Dome C, Antarctica: a fresh look with 3He\",\"authors\":\"G. Fénisse ,&nbsp;D.V. Bekaert ,&nbsp;P.-H. Blard ,&nbsp;J. Duprat ,&nbsp;I. Mattia ,&nbsp;M. Genge ,&nbsp;M.D. Suttle ,&nbsp;O. Barres ,&nbsp;C. Engrand ,&nbsp;Y. Marrocchi\",\"doi\":\"10.1016/j.epsl.2025.119396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Interplanetary dust particles (IDPs) and micrometeorites (MMs), from 1 µm to 5 mm, are the primary source of extraterrestrial (ET) material currently accreted on Earth. The flux of ET particles smaller than ∼50 µm is typically determined through optical counting, but it remains uncertain and may deviate from predictions made by numerical simulations. The volatile element content carried by this flux is still not well-constrained and is influenced by the potential effects of atmospheric heating.</div><div>We developed a clean, pressurized system to extract cosmic dust from ∼38 kg of clean snow collected near the Concordia station (Dome C, Antarctica). We measured helium isotope concentrations in various granulometric fractions (&gt; 62 µm, 25–62 µm, 5–25 µm and &lt; 5 µm). The inferred global <sup>3</sup>He<sub>ET</sub> annual flux is (1.25±0.03) × 10⁻¹² ccSTP·cm⁻²·ka⁻¹ (weighted mean±1SD), consistent with previous <sup>3</sup>He<sub>ET</sub> flux estimates from marine sediments and polar samples. Our data shows that the majority of the <sup>3</sup>He<sub>ET</sub> flux (70 %) is carried by particles in the 5–25 µm size range, with 20 % attributed to the 25–62 µm fraction. Using an empirical relationship between <sup>3</sup>He<sub>ET</sub> concentrations and cosmic particle mass, we convert these fluxes into a global ET mass flux for particle diameters &lt; 100 µm of (3.5±0.5) kilotons·a⁻¹ (weighted mean±1SD). This result is about 3 times higher than collection estimates from (Rojas et al., 2021) and aligns with CABMOD-ZoDy modeling, after atmospheric entry (Carrillo-Sánchez et al., 2020). This <sup>3</sup>He<sub>ET</sub> method is suited for detecting particles smaller than 100 µm, while collection results are more relevant for larger fractions.</div></div>\",\"PeriodicalId\":11481,\"journal\":{\"name\":\"Earth and Planetary Science Letters\",\"volume\":\"663 \",\"pages\":\"Article 119396\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth and Planetary Science Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012821X25001955\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Planetary Science Letters","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012821X25001955","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

星际尘埃颗粒(IDPs)和微陨石(mm),直径从1µm到5 mm,是目前地球上吸积的地外物质的主要来源。小于~ 50µm的ET粒子的通量通常是通过光学计数来确定的,但它仍然是不确定的,并且可能与数值模拟的预测相偏离。该通量所携带的挥发性元素含量仍未得到很好的约束,并受到大气加热的潜在影响。我们开发了一种清洁的加压系统,从Concordia站(Dome C, Antarctica)附近收集的约38公斤清洁雪中提取宇宙尘埃。我们测量了不同颗粒馏分中的氦同位素浓度(>;62µm, 25-62µm, 5-25µm和<;5µm)。推断出的全球3HeET年通量为(1.25±0.03)× 10⁻¹²ccSTP·cm⁻²·ka⁻¹(加权平均值±1SD),与之前从海洋沉积物和极地样本中估计的3HeET年通量一致。我们的数据表明,大部分的3HeET通量(70%)是由5-25µm粒径范围内的颗粒携带的,其中20%归因于25-62µm的部分。利用3HeET浓度与宇宙粒子质量之间的经验关系,我们将这些通量转换为粒子直径<的全球ET质量通量;100µm(3.5±0.5)千吨·a⁻¹(加权平均值±1SD)。这一结果比(Rojas et al., 2021)的收集估算值高出约3倍,并与进入大气后的CABMOD-ZoDy模型一致(Carrillo-Sánchez et al., 2020)。这种3HeET方法适用于检测小于100 μ m的颗粒,而收集结果更适用于较大的分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The extraterrestrial dust accretion rate on Earth at Dome C, Antarctica: a fresh look with 3He
Interplanetary dust particles (IDPs) and micrometeorites (MMs), from 1 µm to 5 mm, are the primary source of extraterrestrial (ET) material currently accreted on Earth. The flux of ET particles smaller than ∼50 µm is typically determined through optical counting, but it remains uncertain and may deviate from predictions made by numerical simulations. The volatile element content carried by this flux is still not well-constrained and is influenced by the potential effects of atmospheric heating.
We developed a clean, pressurized system to extract cosmic dust from ∼38 kg of clean snow collected near the Concordia station (Dome C, Antarctica). We measured helium isotope concentrations in various granulometric fractions (> 62 µm, 25–62 µm, 5–25 µm and < 5 µm). The inferred global 3HeET annual flux is (1.25±0.03) × 10⁻¹² ccSTP·cm⁻²·ka⁻¹ (weighted mean±1SD), consistent with previous 3HeET flux estimates from marine sediments and polar samples. Our data shows that the majority of the 3HeET flux (70 %) is carried by particles in the 5–25 µm size range, with 20 % attributed to the 25–62 µm fraction. Using an empirical relationship between 3HeET concentrations and cosmic particle mass, we convert these fluxes into a global ET mass flux for particle diameters < 100 µm of (3.5±0.5) kilotons·a⁻¹ (weighted mean±1SD). This result is about 3 times higher than collection estimates from (Rojas et al., 2021) and aligns with CABMOD-ZoDy modeling, after atmospheric entry (Carrillo-Sánchez et al., 2020). This 3HeET method is suited for detecting particles smaller than 100 µm, while collection results are more relevant for larger fractions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Earth and Planetary Science Letters
Earth and Planetary Science Letters 地学-地球化学与地球物理
CiteScore
10.30
自引率
5.70%
发文量
475
审稿时长
2.8 months
期刊介绍: Earth and Planetary Science Letters (EPSL) is a leading journal for researchers across the entire Earth and planetary sciences community. It publishes concise, exciting, high-impact articles ("Letters") of broad interest. Its focus is on physical and chemical processes, the evolution and general properties of the Earth and planets - from their deep interiors to their atmospheres. EPSL also includes a Frontiers section, featuring invited high-profile synthesis articles by leading experts on timely topics to bring cutting-edge research to the wider community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信