基于棕熊优化和差分进化的太阳能光伏参数精确估计

IF 6.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Khalid M. Hosny , Amr A. Abd El-Mageed , Amr A. Abohany , Reda M. Hussein , Mona Gaffar
{"title":"基于棕熊优化和差分进化的太阳能光伏参数精确估计","authors":"Khalid M. Hosny ,&nbsp;Amr A. Abd El-Mageed ,&nbsp;Amr A. Abohany ,&nbsp;Reda M. Hussein ,&nbsp;Mona Gaffar","doi":"10.1016/j.aej.2025.04.020","DOIUrl":null,"url":null,"abstract":"<div><div>Estimating the optimal parameter values for photovoltaic (PV) models is inherently challenging due to the complex and nonlinear nature of their current–voltage (I–V) characteristic curves. Precise parameter estimation is critical for ensuring the efficient operation of PV systems, as it directly influences energy output and current generation. Traditional methods for addressing this problem often suffer from convergence to local optima and require substantial computational resources, particularly concerning the count of fitness evaluations. To overcome these challenges, this paper presents an enhanced optimization method: the Brown Bear Optimization Algorithm (BBOA) hybridized with Diagonal Linear Uniform Initialization (DLUI) and the Differential Evolution (DE) algorithm, termed BBOA-DLUI-DE. This hybrid approach’s innovative design lies in integrating the DE algorithm to enhance solution diversity, ensuring better exploration and preventing premature convergence. DLUI contributes to a uniformly diverse initial population that supports rapid and robust optimization. This synergy between BBOA, DLUI, and DE addresses the limitations of existing methods by combining efficient global search capabilities with effective local refinement. The proposed BBOA-DLUI-DE method has been rigorously evaluated against state-of-the-art techniques, demonstrating superior performance in finding optimal parameter values for various PV models. Comparative statistical and practical analyses highlight that BBOA-DLUI-DE outperforms traditional methods regarding accuracy and computational efficiency. Furthermore, validation using manufacturing data sheets (MCSM55 and TFST40) confirms the practical applicability and robustness of the proposed method, making it a highly effective tool for estimating PV parameters.</div></div>","PeriodicalId":7484,"journal":{"name":"alexandria engineering journal","volume":"127 ","pages":"Pages 164-199"},"PeriodicalIF":6.2000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Precise estimation of solar photovoltaic parameters via brown bear optimization and Differential Evolution\",\"authors\":\"Khalid M. Hosny ,&nbsp;Amr A. Abd El-Mageed ,&nbsp;Amr A. Abohany ,&nbsp;Reda M. Hussein ,&nbsp;Mona Gaffar\",\"doi\":\"10.1016/j.aej.2025.04.020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Estimating the optimal parameter values for photovoltaic (PV) models is inherently challenging due to the complex and nonlinear nature of their current–voltage (I–V) characteristic curves. Precise parameter estimation is critical for ensuring the efficient operation of PV systems, as it directly influences energy output and current generation. Traditional methods for addressing this problem often suffer from convergence to local optima and require substantial computational resources, particularly concerning the count of fitness evaluations. To overcome these challenges, this paper presents an enhanced optimization method: the Brown Bear Optimization Algorithm (BBOA) hybridized with Diagonal Linear Uniform Initialization (DLUI) and the Differential Evolution (DE) algorithm, termed BBOA-DLUI-DE. This hybrid approach’s innovative design lies in integrating the DE algorithm to enhance solution diversity, ensuring better exploration and preventing premature convergence. DLUI contributes to a uniformly diverse initial population that supports rapid and robust optimization. This synergy between BBOA, DLUI, and DE addresses the limitations of existing methods by combining efficient global search capabilities with effective local refinement. The proposed BBOA-DLUI-DE method has been rigorously evaluated against state-of-the-art techniques, demonstrating superior performance in finding optimal parameter values for various PV models. Comparative statistical and practical analyses highlight that BBOA-DLUI-DE outperforms traditional methods regarding accuracy and computational efficiency. Furthermore, validation using manufacturing data sheets (MCSM55 and TFST40) confirms the practical applicability and robustness of the proposed method, making it a highly effective tool for estimating PV parameters.</div></div>\",\"PeriodicalId\":7484,\"journal\":{\"name\":\"alexandria engineering journal\",\"volume\":\"127 \",\"pages\":\"Pages 164-199\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"alexandria engineering journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1110016825005034\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"alexandria engineering journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110016825005034","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于光伏(PV)模型的电流-电压(I-V)特性曲线的复杂性和非线性性质,估计其最优参数值具有固有的挑战性。准确的参数估计是确保光伏系统高效运行的关键,因为它直接影响到能量输出和电流产生。解决这一问题的传统方法往往会收敛到局部最优,并且需要大量的计算资源,特别是关于适应度评估的计数。为了克服这些挑战,本文提出了一种改进的优化方法:混合对角线性均匀初始化(DLUI)和差分进化(DE)算法的棕熊优化算法(BBOA),称为BBOA-DLUI-DE。这种混合方法的创新设计在于集成了DE算法,增强了解的多样性,保证了更好的探索,防止了过早收敛。DLUI有助于统一的多样化初始种群,支持快速和稳健的优化。BBOA、DLUI和DE之间的这种协同作用通过将高效的全局搜索功能与有效的局部细化相结合,解决了现有方法的局限性。所提出的bboa - plui - de方法已经过严格的技术评估,在寻找各种PV模型的最佳参数值方面表现出卓越的性能。对比统计和实际分析表明,BBOA-DLUI-DE在精度和计算效率方面优于传统方法。此外,使用制造数据表(MCSM55和TFST40)进行验证,证实了所提出方法的实用性和鲁棒性,使其成为估计PV参数的高效工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Precise estimation of solar photovoltaic parameters via brown bear optimization and Differential Evolution
Estimating the optimal parameter values for photovoltaic (PV) models is inherently challenging due to the complex and nonlinear nature of their current–voltage (I–V) characteristic curves. Precise parameter estimation is critical for ensuring the efficient operation of PV systems, as it directly influences energy output and current generation. Traditional methods for addressing this problem often suffer from convergence to local optima and require substantial computational resources, particularly concerning the count of fitness evaluations. To overcome these challenges, this paper presents an enhanced optimization method: the Brown Bear Optimization Algorithm (BBOA) hybridized with Diagonal Linear Uniform Initialization (DLUI) and the Differential Evolution (DE) algorithm, termed BBOA-DLUI-DE. This hybrid approach’s innovative design lies in integrating the DE algorithm to enhance solution diversity, ensuring better exploration and preventing premature convergence. DLUI contributes to a uniformly diverse initial population that supports rapid and robust optimization. This synergy between BBOA, DLUI, and DE addresses the limitations of existing methods by combining efficient global search capabilities with effective local refinement. The proposed BBOA-DLUI-DE method has been rigorously evaluated against state-of-the-art techniques, demonstrating superior performance in finding optimal parameter values for various PV models. Comparative statistical and practical analyses highlight that BBOA-DLUI-DE outperforms traditional methods regarding accuracy and computational efficiency. Furthermore, validation using manufacturing data sheets (MCSM55 and TFST40) confirms the practical applicability and robustness of the proposed method, making it a highly effective tool for estimating PV parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
alexandria engineering journal
alexandria engineering journal Engineering-General Engineering
CiteScore
11.20
自引率
4.40%
发文量
1015
审稿时长
43 days
期刊介绍: Alexandria Engineering Journal is an international journal devoted to publishing high quality papers in the field of engineering and applied science. Alexandria Engineering Journal is cited in the Engineering Information Services (EIS) and the Chemical Abstracts (CA). The papers published in Alexandria Engineering Journal are grouped into five sections, according to the following classification: • Mechanical, Production, Marine and Textile Engineering • Electrical Engineering, Computer Science and Nuclear Engineering • Civil and Architecture Engineering • Chemical Engineering and Applied Sciences • Environmental Engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信