氧化石墨烯膜中刚性多孔纳米颗粒的原位结晶用于染料稳定脱盐

IF 8.3 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Yun-Han Ren , Wen-Hai Zhang , Ming-Jie Yin , Zhi-Jie Liu , Quan-Fu An
{"title":"氧化石墨烯膜中刚性多孔纳米颗粒的原位结晶用于染料稳定脱盐","authors":"Yun-Han Ren ,&nbsp;Wen-Hai Zhang ,&nbsp;Ming-Jie Yin ,&nbsp;Zhi-Jie Liu ,&nbsp;Quan-Fu An","doi":"10.1016/j.desal.2025.119001","DOIUrl":null,"url":null,"abstract":"<div><div>Graphene oxide (GO) membranes offer substantial promise in the field of dye desalination. However, the low water permeance and structural instability limit their practical application. To address these challenges, a nanoparticle intercalation coupled with in-situ crystallization strategy was developed to tailor the microstructure of GO membranes. This approach enhances the interlayer spacing and strengthens the mechanical properties of the membrane. Rigid, porous MIL-100(Fe) nanoparticles are formed at the defective regions and interlayer spaces of the GO membrane through the in-situ conversion of pre-intercalated iron hydroxide nanoparticles. The MIL-100(Fe)@GO (MGO) membrane features an enlarged interlayer spacing and porous architecture, enabling it to attain a water permeance of 89.4 LMH/bar—a 22-fold improvement compared to the GO membrane. Additionally, the porous structure and negatively charged membrane surface improve dye rejection efficiency (e.g., 98.8 % for Methyl Blue (MB)) while maintaining low rejection of inorganic salts (e.g., &lt;5 % for NaCl). More importantly, the insertion of rigid MIL-100(Fe) nanoparticles imparts exceptional stability to the membrane under cross-flow operation, including no decline in water permeance under high pressure, chemical stability across various pH conditions, and long-term operational stability. These characteristics make the MGO membrane a highly promising option for dye desalination applications.</div></div>","PeriodicalId":299,"journal":{"name":"Desalination","volume":"613 ","pages":"Article 119001"},"PeriodicalIF":8.3000,"publicationDate":"2025-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-situ crystallization of rigid porous nanoparticles in the GO membrane for stable dye desalination\",\"authors\":\"Yun-Han Ren ,&nbsp;Wen-Hai Zhang ,&nbsp;Ming-Jie Yin ,&nbsp;Zhi-Jie Liu ,&nbsp;Quan-Fu An\",\"doi\":\"10.1016/j.desal.2025.119001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Graphene oxide (GO) membranes offer substantial promise in the field of dye desalination. However, the low water permeance and structural instability limit their practical application. To address these challenges, a nanoparticle intercalation coupled with in-situ crystallization strategy was developed to tailor the microstructure of GO membranes. This approach enhances the interlayer spacing and strengthens the mechanical properties of the membrane. Rigid, porous MIL-100(Fe) nanoparticles are formed at the defective regions and interlayer spaces of the GO membrane through the in-situ conversion of pre-intercalated iron hydroxide nanoparticles. The MIL-100(Fe)@GO (MGO) membrane features an enlarged interlayer spacing and porous architecture, enabling it to attain a water permeance of 89.4 LMH/bar—a 22-fold improvement compared to the GO membrane. Additionally, the porous structure and negatively charged membrane surface improve dye rejection efficiency (e.g., 98.8 % for Methyl Blue (MB)) while maintaining low rejection of inorganic salts (e.g., &lt;5 % for NaCl). More importantly, the insertion of rigid MIL-100(Fe) nanoparticles imparts exceptional stability to the membrane under cross-flow operation, including no decline in water permeance under high pressure, chemical stability across various pH conditions, and long-term operational stability. These characteristics make the MGO membrane a highly promising option for dye desalination applications.</div></div>\",\"PeriodicalId\":299,\"journal\":{\"name\":\"Desalination\",\"volume\":\"613 \",\"pages\":\"Article 119001\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Desalination\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0011916425004771\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Desalination","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011916425004771","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

氧化石墨烯(GO)膜在染料脱盐领域具有重要的应用前景。然而,低透水性和结构不稳定性限制了其实际应用。为了解决这些问题,研究人员开发了一种纳米颗粒插入与原位结晶策略相结合的方法来定制氧化石墨烯膜的微观结构。这种方法增加了层间距,增强了膜的力学性能。通过原位转化预嵌入的氢氧化铁纳米颗粒,在氧化石墨烯膜的缺陷区和层间空间形成刚性、多孔的MIL-100(Fe)纳米颗粒。MIL-100(Fe)@GO (MGO)膜具有更大的层间距和多孔结构,使其达到89.4 LMH/bar的透水性,比GO膜提高了22倍。此外,多孔结构和带负电荷的膜表面提高了染料的去除率(例如,甲基蓝(MB)的去除率为98.8%),同时保持了对无机盐的低去除率(例如,NaCl的去除率为<; 5%)。更重要的是,刚性MIL-100(Fe)纳米颗粒的插入使膜在横流操作下具有优异的稳定性,包括高压下不降低水渗透性,各种pH条件下的化学稳定性以及长期操作稳定性。这些特性使MGO膜成为染料脱盐应用的一个非常有前途的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

In-situ crystallization of rigid porous nanoparticles in the GO membrane for stable dye desalination

In-situ crystallization of rigid porous nanoparticles in the GO membrane for stable dye desalination
Graphene oxide (GO) membranes offer substantial promise in the field of dye desalination. However, the low water permeance and structural instability limit their practical application. To address these challenges, a nanoparticle intercalation coupled with in-situ crystallization strategy was developed to tailor the microstructure of GO membranes. This approach enhances the interlayer spacing and strengthens the mechanical properties of the membrane. Rigid, porous MIL-100(Fe) nanoparticles are formed at the defective regions and interlayer spaces of the GO membrane through the in-situ conversion of pre-intercalated iron hydroxide nanoparticles. The MIL-100(Fe)@GO (MGO) membrane features an enlarged interlayer spacing and porous architecture, enabling it to attain a water permeance of 89.4 LMH/bar—a 22-fold improvement compared to the GO membrane. Additionally, the porous structure and negatively charged membrane surface improve dye rejection efficiency (e.g., 98.8 % for Methyl Blue (MB)) while maintaining low rejection of inorganic salts (e.g., <5 % for NaCl). More importantly, the insertion of rigid MIL-100(Fe) nanoparticles imparts exceptional stability to the membrane under cross-flow operation, including no decline in water permeance under high pressure, chemical stability across various pH conditions, and long-term operational stability. These characteristics make the MGO membrane a highly promising option for dye desalination applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Desalination
Desalination 工程技术-工程:化工
CiteScore
14.60
自引率
20.20%
发文量
619
审稿时长
41 days
期刊介绍: Desalination is a scholarly journal that focuses on the field of desalination materials, processes, and associated technologies. It encompasses a wide range of disciplines and aims to publish exceptional papers in this area. The journal invites submissions that explicitly revolve around water desalting and its applications to various sources such as seawater, groundwater, and wastewater. It particularly encourages research on diverse desalination methods including thermal, membrane, sorption, and hybrid processes. By providing a platform for innovative studies, Desalination aims to advance the understanding and development of desalination technologies, promoting sustainable solutions for water scarcity challenges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信