Chaojian Xu , Juxin Yin , Sihong Wang , Yue Pan , Qianhe Zhang , Ningkang Xie , Shuo Yang , Shaowu Lv
{"title":"乙酰丙酮-过渡金属自引发水凝胶的有氧自由基聚合","authors":"Chaojian Xu , Juxin Yin , Sihong Wang , Yue Pan , Qianhe Zhang , Ningkang Xie , Shuo Yang , Shaowu Lv","doi":"10.1016/j.cclet.2025.111075","DOIUrl":null,"url":null,"abstract":"<div><div>The performance of hydrogel radical polymerization under ambient conditions is a major challenge because oxygen is an effective radical quencher and the steps to remove or neutralize it are time consuming and laborious. A self-initiating system consisting of transition metals and acetylacetone has been successfully developed. The system is capable of initiating free radical polymerization of hydrogels at room temperature under aerobic conditions, which is attributed to carbon radicals generated by the oxidation of acetylacetone. Some of these carbon radicals reduce oxygen to generate hydroxyl radicals, which together induce self-coagulation of hydrogels. The polymerization system was effective for a variety of monomer and hydrogel swelling and shrinking schemes, and the reaction remained successful when exposed to saturated oxygen. In conclusion, the results demonstrate that the present strategy is an effective approach to addressing the challenge of deoxygenation in polymer synthesis, and provides a convenient method for synthesizing multifunctional hydrogels under ambient conditions.</div></div>","PeriodicalId":10088,"journal":{"name":"Chinese Chemical Letters","volume":"36 7","pages":"Article 111075"},"PeriodicalIF":9.4000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aerobic radical polymerization of hydrogels triggered by acetylacetone-transition metal self-initiation\",\"authors\":\"Chaojian Xu , Juxin Yin , Sihong Wang , Yue Pan , Qianhe Zhang , Ningkang Xie , Shuo Yang , Shaowu Lv\",\"doi\":\"10.1016/j.cclet.2025.111075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The performance of hydrogel radical polymerization under ambient conditions is a major challenge because oxygen is an effective radical quencher and the steps to remove or neutralize it are time consuming and laborious. A self-initiating system consisting of transition metals and acetylacetone has been successfully developed. The system is capable of initiating free radical polymerization of hydrogels at room temperature under aerobic conditions, which is attributed to carbon radicals generated by the oxidation of acetylacetone. Some of these carbon radicals reduce oxygen to generate hydroxyl radicals, which together induce self-coagulation of hydrogels. The polymerization system was effective for a variety of monomer and hydrogel swelling and shrinking schemes, and the reaction remained successful when exposed to saturated oxygen. In conclusion, the results demonstrate that the present strategy is an effective approach to addressing the challenge of deoxygenation in polymer synthesis, and provides a convenient method for synthesizing multifunctional hydrogels under ambient conditions.</div></div>\",\"PeriodicalId\":10088,\"journal\":{\"name\":\"Chinese Chemical Letters\",\"volume\":\"36 7\",\"pages\":\"Article 111075\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Chemical Letters\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S100184172500261X\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Chemical Letters","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S100184172500261X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Aerobic radical polymerization of hydrogels triggered by acetylacetone-transition metal self-initiation
The performance of hydrogel radical polymerization under ambient conditions is a major challenge because oxygen is an effective radical quencher and the steps to remove or neutralize it are time consuming and laborious. A self-initiating system consisting of transition metals and acetylacetone has been successfully developed. The system is capable of initiating free radical polymerization of hydrogels at room temperature under aerobic conditions, which is attributed to carbon radicals generated by the oxidation of acetylacetone. Some of these carbon radicals reduce oxygen to generate hydroxyl radicals, which together induce self-coagulation of hydrogels. The polymerization system was effective for a variety of monomer and hydrogel swelling and shrinking schemes, and the reaction remained successful when exposed to saturated oxygen. In conclusion, the results demonstrate that the present strategy is an effective approach to addressing the challenge of deoxygenation in polymer synthesis, and provides a convenient method for synthesizing multifunctional hydrogels under ambient conditions.
期刊介绍:
Chinese Chemical Letters (CCL) (ISSN 1001-8417) was founded in July 1990. The journal publishes preliminary accounts in the whole field of chemistry, including inorganic chemistry, organic chemistry, analytical chemistry, physical chemistry, polymer chemistry, applied chemistry, etc.Chinese Chemical Letters does not accept articles previously published or scheduled to be published. To verify originality, your article may be checked by the originality detection service CrossCheck.