自共轭分区中钩的分布

IF 0.7 3区 数学 Q2 MATHEMATICS
William Craig , Ken Ono , Ajit Singh
{"title":"自共轭分区中钩的分布","authors":"William Craig ,&nbsp;Ken Ono ,&nbsp;Ajit Singh","doi":"10.1016/j.disc.2025.114563","DOIUrl":null,"url":null,"abstract":"<div><div>We confirm the speculation that the distribution of <em>t</em>-hooks among unrestricted integer partitions essentially descends to self-conjugate partitions. Namely, we prove that the number of hooks of length <em>t</em> among the size <em>n</em> self-conjugate partitions is asymptotically normally distributed with mean <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> and variance <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>t</mi></mrow></msub><msup><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span><span><span><span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>∼</mo><mfrac><mrow><msqrt><mrow><mn>6</mn><mi>n</mi></mrow></msqrt></mrow><mrow><mi>π</mi></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>3</mn></mrow><mrow><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><mo>−</mo><mfrac><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mfrac><mrow><msub><mrow><mi>δ</mi></mrow><mrow><mi>t</mi></mrow></msub></mrow><mrow><mn>4</mn></mrow></mfrac><mspace></mspace><mspace></mspace><mspace></mspace><mtext>and</mtext><mspace></mspace><mspace></mspace><mspace></mspace><msubsup><mrow><mi>σ</mi></mrow><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>(</mo><mi>n</mi><mo>)</mo><mo>∼</mo><mfrac><mrow><mrow><mo>(</mo><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>6</mn><mo>)</mo></mrow><msqrt><mrow><mn>6</mn><mi>n</mi></mrow></msqrt></mrow><mrow><msup><mrow><mi>π</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></mfrac><mo>,</mo></math></span></span></span> where <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>:</mo><mo>=</mo><mn>1</mn></math></span> if <em>t</em> is odd and is 0 otherwise.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 10","pages":"Article 114563"},"PeriodicalIF":0.7000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distribution of hooks in self-conjugate partitions\",\"authors\":\"William Craig ,&nbsp;Ken Ono ,&nbsp;Ajit Singh\",\"doi\":\"10.1016/j.disc.2025.114563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We confirm the speculation that the distribution of <em>t</em>-hooks among unrestricted integer partitions essentially descends to self-conjugate partitions. Namely, we prove that the number of hooks of length <em>t</em> among the size <em>n</em> self-conjugate partitions is asymptotically normally distributed with mean <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> and variance <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>t</mi></mrow></msub><msup><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span><span><span><span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>∼</mo><mfrac><mrow><msqrt><mrow><mn>6</mn><mi>n</mi></mrow></msqrt></mrow><mrow><mi>π</mi></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>3</mn></mrow><mrow><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><mo>−</mo><mfrac><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mfrac><mrow><msub><mrow><mi>δ</mi></mrow><mrow><mi>t</mi></mrow></msub></mrow><mrow><mn>4</mn></mrow></mfrac><mspace></mspace><mspace></mspace><mspace></mspace><mtext>and</mtext><mspace></mspace><mspace></mspace><mspace></mspace><msubsup><mrow><mi>σ</mi></mrow><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>(</mo><mi>n</mi><mo>)</mo><mo>∼</mo><mfrac><mrow><mrow><mo>(</mo><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>6</mn><mo>)</mo></mrow><msqrt><mrow><mn>6</mn><mi>n</mi></mrow></msqrt></mrow><mrow><msup><mrow><mi>π</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></mfrac><mo>,</mo></math></span></span></span> where <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>:</mo><mo>=</mo><mn>1</mn></math></span> if <em>t</em> is odd and is 0 otherwise.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 10\",\"pages\":\"Article 114563\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X25001712\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25001712","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证实了t钩在不受限制的整数分区中的分布本质上下降到自共轭分区的推测。即证明了n个自共轭分区中长度为t的钩子数渐近正态分布,其均值为μt(n),方差为σt(n)2μt(n) ~ 6nπ+3π2−t2+δt4和σt2(n) ~ (π2−6)6nπ3,其中t为奇数时δt =1,反之δt = 0。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distribution of hooks in self-conjugate partitions
We confirm the speculation that the distribution of t-hooks among unrestricted integer partitions essentially descends to self-conjugate partitions. Namely, we prove that the number of hooks of length t among the size n self-conjugate partitions is asymptotically normally distributed with mean μt(n) and variance σt(n)2μt(n)6nπ+3π2t2+δt4andσt2(n)(π26)6nπ3, where δt:=1 if t is odd and is 0 otherwise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信