{"title":"自共轭分区中钩的分布","authors":"William Craig , Ken Ono , Ajit Singh","doi":"10.1016/j.disc.2025.114563","DOIUrl":null,"url":null,"abstract":"<div><div>We confirm the speculation that the distribution of <em>t</em>-hooks among unrestricted integer partitions essentially descends to self-conjugate partitions. Namely, we prove that the number of hooks of length <em>t</em> among the size <em>n</em> self-conjugate partitions is asymptotically normally distributed with mean <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> and variance <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>t</mi></mrow></msub><msup><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span><span><span><span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>∼</mo><mfrac><mrow><msqrt><mrow><mn>6</mn><mi>n</mi></mrow></msqrt></mrow><mrow><mi>π</mi></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>3</mn></mrow><mrow><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><mo>−</mo><mfrac><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mfrac><mrow><msub><mrow><mi>δ</mi></mrow><mrow><mi>t</mi></mrow></msub></mrow><mrow><mn>4</mn></mrow></mfrac><mspace></mspace><mspace></mspace><mspace></mspace><mtext>and</mtext><mspace></mspace><mspace></mspace><mspace></mspace><msubsup><mrow><mi>σ</mi></mrow><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>(</mo><mi>n</mi><mo>)</mo><mo>∼</mo><mfrac><mrow><mrow><mo>(</mo><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>6</mn><mo>)</mo></mrow><msqrt><mrow><mn>6</mn><mi>n</mi></mrow></msqrt></mrow><mrow><msup><mrow><mi>π</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></mfrac><mo>,</mo></math></span></span></span> where <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>:</mo><mo>=</mo><mn>1</mn></math></span> if <em>t</em> is odd and is 0 otherwise.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 10","pages":"Article 114563"},"PeriodicalIF":0.7000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distribution of hooks in self-conjugate partitions\",\"authors\":\"William Craig , Ken Ono , Ajit Singh\",\"doi\":\"10.1016/j.disc.2025.114563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We confirm the speculation that the distribution of <em>t</em>-hooks among unrestricted integer partitions essentially descends to self-conjugate partitions. Namely, we prove that the number of hooks of length <em>t</em> among the size <em>n</em> self-conjugate partitions is asymptotically normally distributed with mean <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> and variance <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>t</mi></mrow></msub><msup><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span><span><span><span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>∼</mo><mfrac><mrow><msqrt><mrow><mn>6</mn><mi>n</mi></mrow></msqrt></mrow><mrow><mi>π</mi></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>3</mn></mrow><mrow><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><mo>−</mo><mfrac><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mfrac><mrow><msub><mrow><mi>δ</mi></mrow><mrow><mi>t</mi></mrow></msub></mrow><mrow><mn>4</mn></mrow></mfrac><mspace></mspace><mspace></mspace><mspace></mspace><mtext>and</mtext><mspace></mspace><mspace></mspace><mspace></mspace><msubsup><mrow><mi>σ</mi></mrow><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>(</mo><mi>n</mi><mo>)</mo><mo>∼</mo><mfrac><mrow><mrow><mo>(</mo><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>6</mn><mo>)</mo></mrow><msqrt><mrow><mn>6</mn><mi>n</mi></mrow></msqrt></mrow><mrow><msup><mrow><mi>π</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></mfrac><mo>,</mo></math></span></span></span> where <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>:</mo><mo>=</mo><mn>1</mn></math></span> if <em>t</em> is odd and is 0 otherwise.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 10\",\"pages\":\"Article 114563\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X25001712\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25001712","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Distribution of hooks in self-conjugate partitions
We confirm the speculation that the distribution of t-hooks among unrestricted integer partitions essentially descends to self-conjugate partitions. Namely, we prove that the number of hooks of length t among the size n self-conjugate partitions is asymptotically normally distributed with mean and variance where if t is odd and is 0 otherwise.
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.