X. Xu , Y. Hu , S. Atamturktur , L. Chen , J. Wang
{"title":"基于机器学习的建筑能源建模中不确定性量化的系统综述","authors":"X. Xu , Y. Hu , S. Atamturktur , L. Chen , J. Wang","doi":"10.1016/j.rser.2025.115817","DOIUrl":null,"url":null,"abstract":"<div><div>Uncertainty quantification (UQ) has received increasing attention for improving the reliability, transparency, and robustness of machine learning (ML)-based building energy modeling (BEM). As ML methods are widely integrated into BEM applications, there is a growing need for a structured and comprehensive understanding of UQ implementations in ML-based BEM. This paper addresses this gap by presenting a thorough review of literatures at the intersection of ML, BEM, and UQ, guided by a systematic literature search using a Keyword Synonym Search strategy. First, three primary sources of uncertainty are identified in ML-based BEM, which are building system operations, building simulation tools, and ML models. The contributing factors of these sources are further categorized into aleatoric and epistemic uncertainty. The review then examines ten state-of-the-art UQ techniques, respectively ensemble modeling, prior network, Bayesian neural networks, Markov Chain Monte Carlo, variational inference, dropout networks, Bayes by Backprop, Bayesian active learning, variational autoencoders, and Gaussian process. Each UQ technique is reviewed in terms of its modeling principles and applications within ML-based BEM. The discussion offers critical insights into the necessity, practical implementation, comparative performance, and research gaps of UQ in ML-based BEM. Five research challenges are discussed, such as the underrepresentation of aleatoric uncertainty in building datasets and limited adoptions of advanced UQ techniques within ML-based BEM. Finally, this review concludes with recommendations for future research to support the development of uncertainty-aware ML-based BEMs.</div></div>","PeriodicalId":418,"journal":{"name":"Renewable and Sustainable Energy Reviews","volume":"218 ","pages":"Article 115817"},"PeriodicalIF":16.3000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Systematic review on uncertainty quantification in machine learning-based building energy modeling\",\"authors\":\"X. Xu , Y. Hu , S. Atamturktur , L. Chen , J. Wang\",\"doi\":\"10.1016/j.rser.2025.115817\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Uncertainty quantification (UQ) has received increasing attention for improving the reliability, transparency, and robustness of machine learning (ML)-based building energy modeling (BEM). As ML methods are widely integrated into BEM applications, there is a growing need for a structured and comprehensive understanding of UQ implementations in ML-based BEM. This paper addresses this gap by presenting a thorough review of literatures at the intersection of ML, BEM, and UQ, guided by a systematic literature search using a Keyword Synonym Search strategy. First, three primary sources of uncertainty are identified in ML-based BEM, which are building system operations, building simulation tools, and ML models. The contributing factors of these sources are further categorized into aleatoric and epistemic uncertainty. The review then examines ten state-of-the-art UQ techniques, respectively ensemble modeling, prior network, Bayesian neural networks, Markov Chain Monte Carlo, variational inference, dropout networks, Bayes by Backprop, Bayesian active learning, variational autoencoders, and Gaussian process. Each UQ technique is reviewed in terms of its modeling principles and applications within ML-based BEM. The discussion offers critical insights into the necessity, practical implementation, comparative performance, and research gaps of UQ in ML-based BEM. Five research challenges are discussed, such as the underrepresentation of aleatoric uncertainty in building datasets and limited adoptions of advanced UQ techniques within ML-based BEM. Finally, this review concludes with recommendations for future research to support the development of uncertainty-aware ML-based BEMs.</div></div>\",\"PeriodicalId\":418,\"journal\":{\"name\":\"Renewable and Sustainable Energy Reviews\",\"volume\":\"218 \",\"pages\":\"Article 115817\"},\"PeriodicalIF\":16.3000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Renewable and Sustainable Energy Reviews\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364032125004903\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable and Sustainable Energy Reviews","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364032125004903","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Systematic review on uncertainty quantification in machine learning-based building energy modeling
Uncertainty quantification (UQ) has received increasing attention for improving the reliability, transparency, and robustness of machine learning (ML)-based building energy modeling (BEM). As ML methods are widely integrated into BEM applications, there is a growing need for a structured and comprehensive understanding of UQ implementations in ML-based BEM. This paper addresses this gap by presenting a thorough review of literatures at the intersection of ML, BEM, and UQ, guided by a systematic literature search using a Keyword Synonym Search strategy. First, three primary sources of uncertainty are identified in ML-based BEM, which are building system operations, building simulation tools, and ML models. The contributing factors of these sources are further categorized into aleatoric and epistemic uncertainty. The review then examines ten state-of-the-art UQ techniques, respectively ensemble modeling, prior network, Bayesian neural networks, Markov Chain Monte Carlo, variational inference, dropout networks, Bayes by Backprop, Bayesian active learning, variational autoencoders, and Gaussian process. Each UQ technique is reviewed in terms of its modeling principles and applications within ML-based BEM. The discussion offers critical insights into the necessity, practical implementation, comparative performance, and research gaps of UQ in ML-based BEM. Five research challenges are discussed, such as the underrepresentation of aleatoric uncertainty in building datasets and limited adoptions of advanced UQ techniques within ML-based BEM. Finally, this review concludes with recommendations for future research to support the development of uncertainty-aware ML-based BEMs.
期刊介绍:
The mission of Renewable and Sustainable Energy Reviews is to disseminate the most compelling and pertinent critical insights in renewable and sustainable energy, fostering collaboration among the research community, private sector, and policy and decision makers. The journal aims to exchange challenges, solutions, innovative concepts, and technologies, contributing to sustainable development, the transition to a low-carbon future, and the attainment of emissions targets outlined by the United Nations Framework Convention on Climate Change.
Renewable and Sustainable Energy Reviews publishes a diverse range of content, including review papers, original research, case studies, and analyses of new technologies, all featuring a substantial review component such as critique, comparison, or analysis. Introducing a distinctive paper type, Expert Insights, the journal presents commissioned mini-reviews authored by field leaders, addressing topics of significant interest. Case studies undergo consideration only if they showcase the work's applicability to other regions or contribute valuable insights to the broader field of renewable and sustainable energy. Notably, a bibliographic or literature review lacking critical analysis is deemed unsuitable for publication.