关于与Gorenstein代数相关的n阶顶点代数

IF 0.8 2区 数学 Q2 MATHEMATICS
Alex Keene, Christian Soltermann, Gaywalee Yamskulna
{"title":"关于与Gorenstein代数相关的n阶顶点代数","authors":"Alex Keene,&nbsp;Christian Soltermann,&nbsp;Gaywalee Yamskulna","doi":"10.1016/j.jalgebra.2025.04.032","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the algebraic structure of indecomposable <span><math><mi>N</mi></math></span>-graded vertex algebras <span><math><mi>V</mi><mo>=</mo><msubsup><mrow><mo>⨁</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><msub><mrow><mi>V</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, emphasizing the intricate interactions between the commutative associative algebra <span><math><msub><mrow><mi>V</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, the Leibniz algebra <span><math><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and how non-degenerate bilinear forms on <span><math><msub><mrow><mi>V</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> influence their overall structure. We establish foundational properties for indecomposability and locality in <span><math><mi>N</mi></math></span>-graded vertex algebras, with our main result demonstrating the equivalence of locality, indecomposability, and specific structural conditions on semiconformal-vertex algebras. The study of symmetric invariant bilinear forms of semiconformal-vertex algebra is investigated. We also examine the structural characteristics of <span><math><msub><mrow><mi>V</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, demonstrating conditions under which certain <span><math><mi>N</mi></math></span>-graded vertex algebras cannot be quasi vertex operator algebras, semiconformal-vertex algebras, or vertex operator algebras, and explore <span><math><mi>N</mi></math></span>-graded vertex algebras <span><math><mi>V</mi><mo>=</mo><msubsup><mrow><mo>⨁</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><msub><mrow><mi>V</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> associated with Gorenstein algebras. Our analysis includes examining the socle, Poincaré duality properties, and invariant bilinear forms of <span><math><msub><mrow><mi>V</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> and their influence on <span><math><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, providing conditions for embedding rank-one Heisenberg vertex operator algebras within <em>V</em>. Supporting examples and detailed theoretical insights further illustrate these algebraic structures.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"678 ","pages":"Pages 729-768"},"PeriodicalIF":0.8000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On N-graded vertex algebras associated with Gorenstein algebras\",\"authors\":\"Alex Keene,&nbsp;Christian Soltermann,&nbsp;Gaywalee Yamskulna\",\"doi\":\"10.1016/j.jalgebra.2025.04.032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper investigates the algebraic structure of indecomposable <span><math><mi>N</mi></math></span>-graded vertex algebras <span><math><mi>V</mi><mo>=</mo><msubsup><mrow><mo>⨁</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><msub><mrow><mi>V</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, emphasizing the intricate interactions between the commutative associative algebra <span><math><msub><mrow><mi>V</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, the Leibniz algebra <span><math><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and how non-degenerate bilinear forms on <span><math><msub><mrow><mi>V</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> influence their overall structure. We establish foundational properties for indecomposability and locality in <span><math><mi>N</mi></math></span>-graded vertex algebras, with our main result demonstrating the equivalence of locality, indecomposability, and specific structural conditions on semiconformal-vertex algebras. The study of symmetric invariant bilinear forms of semiconformal-vertex algebra is investigated. We also examine the structural characteristics of <span><math><msub><mrow><mi>V</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, demonstrating conditions under which certain <span><math><mi>N</mi></math></span>-graded vertex algebras cannot be quasi vertex operator algebras, semiconformal-vertex algebras, or vertex operator algebras, and explore <span><math><mi>N</mi></math></span>-graded vertex algebras <span><math><mi>V</mi><mo>=</mo><msubsup><mrow><mo>⨁</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><msub><mrow><mi>V</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> associated with Gorenstein algebras. Our analysis includes examining the socle, Poincaré duality properties, and invariant bilinear forms of <span><math><msub><mrow><mi>V</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> and their influence on <span><math><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, providing conditions for embedding rank-one Heisenberg vertex operator algebras within <em>V</em>. Supporting examples and detailed theoretical insights further illustrate these algebraic structures.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"678 \",\"pages\":\"Pages 729-768\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869325002601\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325002601","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了不可分解n阶顶点代数V= n=0∞Vn的代数结构,强调了交换结合代数V0与莱布尼兹代数V1之间复杂的相互作用,以及V0上的非退化双线性形式如何影响它们的整体结构。我们建立了n阶顶点代数的不可分解性和局部性的基本性质,我们的主要结果证明了半形式顶点代数的局部性、不可分解性和特定结构条件的等价性。研究了半形式顶点代数的对称不变双线性形式。我们还研究了V0和V1的结构特征,证明了某些n阶顶点代数不能是拟顶点算子代数、半形式顶点代数或顶点算子代数的条件,并探讨了与Gorenstein代数相关的n阶顶点代数V= n=0∞Vn。我们的分析包括检验V0的集、poincar对偶性质和不变双线性形式及其对V1的影响,为在v中嵌入一级海森堡顶点算子代数提供了条件。支持示例和详细的理论见解进一步说明了这些代数结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On N-graded vertex algebras associated with Gorenstein algebras
This paper investigates the algebraic structure of indecomposable N-graded vertex algebras V=n=0Vn, emphasizing the intricate interactions between the commutative associative algebra V0, the Leibniz algebra V1 and how non-degenerate bilinear forms on V0 influence their overall structure. We establish foundational properties for indecomposability and locality in N-graded vertex algebras, with our main result demonstrating the equivalence of locality, indecomposability, and specific structural conditions on semiconformal-vertex algebras. The study of symmetric invariant bilinear forms of semiconformal-vertex algebra is investigated. We also examine the structural characteristics of V0 and V1, demonstrating conditions under which certain N-graded vertex algebras cannot be quasi vertex operator algebras, semiconformal-vertex algebras, or vertex operator algebras, and explore N-graded vertex algebras V=n=0Vn associated with Gorenstein algebras. Our analysis includes examining the socle, Poincaré duality properties, and invariant bilinear forms of V0 and their influence on V1, providing conditions for embedding rank-one Heisenberg vertex operator algebras within V. Supporting examples and detailed theoretical insights further illustrate these algebraic structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信