Fang Jiao , Yang Zhao , Qiang Yue , Qi Wang , Zhongzhi Li , Wanjing Lin , Lingxi Han , Liangfu Wei
{"title":"6PPD和6PPD醌对斑马鱼的慢性毒性机制","authors":"Fang Jiao , Yang Zhao , Qiang Yue , Qi Wang , Zhongzhi Li , Wanjing Lin , Lingxi Han , Liangfu Wei","doi":"10.1016/j.ese.2025.100567","DOIUrl":null,"url":null,"abstract":"<div><div>N-(1,3-Dimethylbutyl)-N′-phenyl-p-phenylenediamine (6PPD) and its oxidation derivative, 6PPD-quinone (6PPDQ), have been extensively detected in environmental and biological samples, raising significant concerns regarding their chronic aquatic toxicity at environmentally relevant concentrations. However, the underlying mechanisms driving this chronic toxicity remain largely unexplored. Here we show that zebrafish exposed to 6PPD and 6PPDQ exhibit distinct toxicokinetic profiles, with 6PPD preferentially accumulating in the liver and 6PPDQ predominantly targeting the brain. Exposure to both compounds impaired zebrafish growth, induced hepatic damage, and disrupted locomotor behavior. Transcriptomic analysis of liver tissue revealed disturbances in lipid and carbohydrate metabolic pathways in both treatment groups, with distinct differences in gene expression patterns and biochemical responses between 6PPD and 6PPDQ. Specifically, both compounds downregulated peroxisome proliferator-activated receptor gamma (PPARγ) and elevated the expression of pro-inflammatory cytokines (TNF-α and IL-6). Molecular dynamics simulations and surface plasmon resonance experiments further demonstrated that hepatotoxicity was associated with direct binding of these compounds to PPARγ, a critical regulator of lipid metabolism and inflammation. Our findings highlight the hepatotoxic risks of 6PPD and 6PPDQ to aquatic life. Importantly, 6PPDQ exhibited greater toxicity compared to 6PPD, emphasizing an urgent need for targeted environmental controls and regulatory actions to mitigate ecological harm and potential public health consequences.</div></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"25 ","pages":"Article 100567"},"PeriodicalIF":14.0000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chronic toxicity mechanisms of 6PPD and 6PPD-Quinone in zebrafish\",\"authors\":\"Fang Jiao , Yang Zhao , Qiang Yue , Qi Wang , Zhongzhi Li , Wanjing Lin , Lingxi Han , Liangfu Wei\",\"doi\":\"10.1016/j.ese.2025.100567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>N-(1,3-Dimethylbutyl)-N′-phenyl-p-phenylenediamine (6PPD) and its oxidation derivative, 6PPD-quinone (6PPDQ), have been extensively detected in environmental and biological samples, raising significant concerns regarding their chronic aquatic toxicity at environmentally relevant concentrations. However, the underlying mechanisms driving this chronic toxicity remain largely unexplored. Here we show that zebrafish exposed to 6PPD and 6PPDQ exhibit distinct toxicokinetic profiles, with 6PPD preferentially accumulating in the liver and 6PPDQ predominantly targeting the brain. Exposure to both compounds impaired zebrafish growth, induced hepatic damage, and disrupted locomotor behavior. Transcriptomic analysis of liver tissue revealed disturbances in lipid and carbohydrate metabolic pathways in both treatment groups, with distinct differences in gene expression patterns and biochemical responses between 6PPD and 6PPDQ. Specifically, both compounds downregulated peroxisome proliferator-activated receptor gamma (PPARγ) and elevated the expression of pro-inflammatory cytokines (TNF-α and IL-6). Molecular dynamics simulations and surface plasmon resonance experiments further demonstrated that hepatotoxicity was associated with direct binding of these compounds to PPARγ, a critical regulator of lipid metabolism and inflammation. Our findings highlight the hepatotoxic risks of 6PPD and 6PPDQ to aquatic life. Importantly, 6PPDQ exhibited greater toxicity compared to 6PPD, emphasizing an urgent need for targeted environmental controls and regulatory actions to mitigate ecological harm and potential public health consequences.</div></div>\",\"PeriodicalId\":34434,\"journal\":{\"name\":\"Environmental Science and Ecotechnology\",\"volume\":\"25 \",\"pages\":\"Article 100567\"},\"PeriodicalIF\":14.0000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Science and Ecotechnology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666498425000456\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Ecotechnology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666498425000456","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Chronic toxicity mechanisms of 6PPD and 6PPD-Quinone in zebrafish
N-(1,3-Dimethylbutyl)-N′-phenyl-p-phenylenediamine (6PPD) and its oxidation derivative, 6PPD-quinone (6PPDQ), have been extensively detected in environmental and biological samples, raising significant concerns regarding their chronic aquatic toxicity at environmentally relevant concentrations. However, the underlying mechanisms driving this chronic toxicity remain largely unexplored. Here we show that zebrafish exposed to 6PPD and 6PPDQ exhibit distinct toxicokinetic profiles, with 6PPD preferentially accumulating in the liver and 6PPDQ predominantly targeting the brain. Exposure to both compounds impaired zebrafish growth, induced hepatic damage, and disrupted locomotor behavior. Transcriptomic analysis of liver tissue revealed disturbances in lipid and carbohydrate metabolic pathways in both treatment groups, with distinct differences in gene expression patterns and biochemical responses between 6PPD and 6PPDQ. Specifically, both compounds downregulated peroxisome proliferator-activated receptor gamma (PPARγ) and elevated the expression of pro-inflammatory cytokines (TNF-α and IL-6). Molecular dynamics simulations and surface plasmon resonance experiments further demonstrated that hepatotoxicity was associated with direct binding of these compounds to PPARγ, a critical regulator of lipid metabolism and inflammation. Our findings highlight the hepatotoxic risks of 6PPD and 6PPDQ to aquatic life. Importantly, 6PPDQ exhibited greater toxicity compared to 6PPD, emphasizing an urgent need for targeted environmental controls and regulatory actions to mitigate ecological harm and potential public health consequences.
期刊介绍:
Environmental Science & Ecotechnology (ESE) is an international, open-access journal publishing original research in environmental science, engineering, ecotechnology, and related fields. Authors publishing in ESE can immediately, permanently, and freely share their work. They have license options and retain copyright. Published by Elsevier, ESE is co-organized by the Chinese Society for Environmental Sciences, Harbin Institute of Technology, and the Chinese Research Academy of Environmental Sciences, under the supervision of the China Association for Science and Technology.